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1 August 23

This will be a quick review on the materials you might have seen before.
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Let us start with a sentence: R forms a complete ordered field which contains
Q as a dense subset. We shall describe properties of R with axioms which fall into
three main categories: algebraic properties, ordering properties and completeness.
I am going to omit the first two here please check the notes carefully. And the
completeness will be covered in lectures with associated properties and exercises
covered in the further recitations.

Consider the set of natural number N = {1, 2, · · · }, it satisfies the property that
1 ∈ N and if n ∈ N then n+ 1 ∈ N. We get all natural numbers by adding one to
1 ∈ N. That allows us to formulate induction. Together with 0, N∪{0} with addition
forms a monoid, a semigroup with additive identity 0. By adding more elements
(additive inverses), we arrive at Z, the set of integers, and (Z,+, ·) is a commutative
ring with identity. By including multiplicative inverses, we get Q. The rational
numbers, give us a nice example regarding to the notion of equivalence relation.

Let us first recall some of the concepts.

Definition 1.1. Let X and Y be two sets. A relation R is a subset of the cartesian
product X × Y consisting of ordered pairs (x, y) where x ∈ X and y ∈ Y . We often
write xRy instead of (x, y) ∈ R if x and y are related.

Both equivalence relation and function are special types of relation.

Definition 1.2. A relation ≡ on a set X is called an equivalence relation if it is
reflexive, symmetric and transitive.

Once can check that the set Q of rational numbers is a collection of equivalence
classes in Z× Z \ {0} under the equivalence relation (a, b) ∼ (a′, b′) if ab′ = ba′.

Definition 1.3. A function f : X → Y is a subset f ⊆ X × Y such that for any
x ∈ X there is exactly one element y ∈ Y such that (x, y) ∈ f . We often write
y = f(x).

We call the set X on which the function f is defined domain, and the set Y
codomain. Here are some other notations:
• The range of image of f :

f(X) = {y ∈ Y | there is x ∈ X such that f(x) = y} ⊆ Y.

• The (direct) image of a subset A ⊆ X:

f(A) = {y ∈ Y | there is a ∈ A such that f(a) = y} ⊆ f(X).

• The inverse image of a subset B ⊆ Y :

f−1(B) = {x ∈ X | f(x) ∈ B} ⊆ X.

Note that this notation is defined even if the inverse of f does not exist.
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• The graph of f is the subset of X × Y defined by

{(x, f(x)) | x ∈ X}.

Here are some simple examples:

Example 1.4. • Identity function on a set X; Let A ⊂ X, the indicator function
of A, χA : X → {0, 1} is given by

χA(x) =

{
1 if x ∈ A;

0 if x /∈ A.

• Is g : Q→ Q given by g(a/b) = ab a function? Why?

Now you may want to think about that is the interaction between f, f−1 and
set operations, for instance, taking unions and intersections. Here is an theorem
encoding the relations:

Theorem 1.5. Given a function f : X → Y , then for any A,B ⊆ X and C,D ⊆ Y ,
we have

(1) f(A ∪B) = f(A) ∪ f(B).
(2) f(A ∩B) ⊆ f(A) ∩ f(B).
(3) f−1(C ∪D) = f−1(C) ∪ f−1(D).
(4) f−1(C ∩D) = f−1(C) ∩ f−1(D).

Proof. I will only prove (1) here. In order to prove two sets are the same, we only
need to show two inclusions hold. For any y ∈ f(A∪B), there exists some x ∈ A∪B
such that f(x) = y. Since x ∈ A∪B, either x ∈ A or x ∈ B. If x ∈ A, then y ∈ f(A);
if x ∈ B, then y ∈ f(B). Thus y ∈ f(A) ∪ f(B). For the other direction, for any
y ∈ f(A) ∪ f(B), we have y ∈ f(A) or y ∈ f(B). Again, if y ∈ f(A), then there
exists a ∈ A such that f(a) = y; if y ∈ f(B), then there exists a ∈ B such that
f(a) = y. So there exists a ∈ A ∪B such that f(a) = y.

Remark 1.6. One should be careful that in general, we don’t have the equality
on (2). Here is an example. Let A = {−1, 0, 1}, B = Z and define the function
f : A→ B to be f(n) = n2. Take

A = {−1, 0}, B = {0, 1}.

Then A∩B = {0} and thus f(A∩B) = {0}. But f(A)∩ f(B) = {0, 1} 6= {0}. What
if the function f is injective?

Now recall a function f : X → Y being injective, surjective and bijective.

Definition 1.7. A function f : X → Y is called
• surjective or onto, if for any y ∈ Y , there is x ∈ X such that f(x) = y.
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• injective or one-to-one, if for any distinct x1, x2 ∈ X, we have f(x1) 6= f(x2).
Or equivalently, if for any x1, x2 ∈ X with f(x1) = f(x2), then x1 = x2.
• bijective if f is onto and one-to-one, i.e. for any y ∈ Y there is a unique x ∈ X

such that f(x) = y.

One good thing about bijections is that they have inverses. This will turn the
following set

SX = {f : X → X bijection}
with composition as the operation, into a group.

Recall that the composition of two functions f : X → Y and g : Y → Z is the
function g ◦ f : X → Z defined by (g ◦ f)(x) = g(f(x)). The order here is important,
and be careful about the domains and ranges. Given a function f : X → Y , if there
exists a function g : Y → X such that f ◦ g = idY and g ◦ f = idX , then we call
such g the inverse function of f . We have the following characterization of onto,
one-to-one and bijective functions:

Theorem 1.8. Given a function f : X → Y .
• f is onto if and only if a right inverse exists, i.e. there exists g : Y → X such

that f ◦ g = idY .
• f is injective if and only if a left inverse exists, i.e. there exists g : Y → X

such that g ◦ f = idX .
• f is bijective if an only if its inverse exists.

Proof. To prove this theorem, suppose f is onto, then for any y ∈ Y there exists
x ∈ X such that f(x) = y. Define g(y) = x. Then f ◦ g(y) = f(x) = y is the identity
function on Y . Note that right inverse may not be unique! It is unique only if f is a
bijection. Conversely if there exists g : Y → X such that f ◦ g = idY . For any y ∈ Y ,
let x = g(y). Then y = f(g(y)) = f(x) proves the function f is onto. The rest is left
as an exercise.

2 August 25

One of the applications for using bijection is to show two sets contains same “number”
of elements. Indeed, this is how we define a set E to be countable if we could build
up a one-to-one correspondence between E and the set of natural number N.

Definition 2.1. A set E is called countably infinite if there is a bijection f : E → N.
A set if called uncountable if it is not countably infinite or finite.

We call a nonempty set A finite if there exists some n ∈ N and a bijection
f : A→ [n]. I will use the terminology “countable” to represent countably infinite.
But some of the textbooks are using “countable” to represent either finite or countably
infinite.

The following are some properties of countable sets.
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Proposition 2.2. Given two nonempty sets A,B.
(1) If A is countable and B ⊆ A, then either B is finite or countable.
(2) If A is countable and B is either countable or finite, then A ∪B is countable.
(3) If A1, A2, · · · is a sequence of countable sets, then ∪∞j=1Aj is countable.
(4) If B ⊆ A and B is uncountable, then A is uncountable.

Proof. I will only prove (1) in detail. To see this, we can enumerate a countable set
A = {a1, a2, · · · } (what is the bijection to N?). Let B ⊆ A be a nonempty subset.
Then write

B = {n ∈ N | an ∈ B} ⊂ N

to keep track on all the indices of an ∈ B. Then by the well-ordering property, B
has a least element, denoted by n1. Then consider

{n ∈ N | an ∈ B,n > n1}.

If it is empty, then B is finite; if not, repeat this process by applying well-ordering
property. Thus we can define a function f : N→ B by k 7→ ank

which is a bijection.
To see (2), we only need to prove the disjoint version and interpret A ∪ B =

A ∪ (B \ A) where A ∩ (B \ A) = ∅. And the case when A ∩ B = ∅ can be proved
with the help of the countability of sets of even/odd numbers.

Example 2.3. • N is itself countable by the identity function id : N→ N.
• Z is countable since

f(n) =

{
2n if k ∈ Z>0;

−2n+ 1 if k ∈ Z≤0

is a bijection.
• The cartesian product N× N is countable.

One can use either the diagonal argument, or construct a function N× N→ N
by sending (m,n) to 2m3n. Since the prime factorization is unique, so the
function is clearly injective. But this function is definitely not onto since there
is no preimage for, say 7 (natural numbers with primes other than 2, 3 as
divisors). Since N× N is not finite, it has to be countable.
• Q is countable. There are multiple ways to see this. We can consider each

rational number with of form p/q with p, q coprime and q > 0 and consider
the function Q→ Z× N by p/q 7→ (p, q). Or one can also define An = {m/n |
m ∈ Z} for each n ∈ N with map Z→ An given by m 7→ m/n a bijection, thus
each An is countable. Thus ∪∞n=1An = Q is countable.
• R is uncountable. This can be proved by showing that the interval (0, 1) is

uncountable. (If (0, 1) is countable, then there exists a bijection f : N→ (0, 1).
Consider the decimal representations and find an element in (0, 1) with no
preimage.)
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Now let us move on to have a quick review of supremum and infimum of a set
of real numbers. Given a set E ⊆ R, if M ∈ R (may not be an element in E) is an
upper bound of E such that M ≤M ′ for any upper bound M ′ of E, then we call M
a least upper bound or supremum of E, denoted by supE. Likewise, if m ∈ R is a
lower bound of E such that m′ ≤ m for any lower bound m′ of E, then we call m a
greatest lower bound or infimum of E. And we have seen in lecture that if sup exists,
it is unique, and properties of inf follows from that of sup. And moreover, if both
supE and inf E exist, then we have the inequality inf E ≤ x ≤ supE for any x ∈ E.

Given a nonempty subset E ⊂ R.
The completeness axiom guarantees that every nonempty subset of R which is

bounded from above has a supremum. If E is bounded from below, consider

−E = {−x | x ∈ E},

then it is equivalent to that −E is bounded from above, and thus sup(−E) exists.
So with the reflection property inf E = − sup(−E) (prove it) we get every bounded
from below nonempty subset of R has a infimum. This is a direct consequence of
completeness axiom.

Other results from completeness axiom include Archimedean property, and density
of Q, etc. Furthermore, sometimes it is useful by using the approximation of
supremum. Namely, suppose E ⊂ R is bounded from above and S ∈ R, then
S = supE if and only if for any ε > 0, there exists some a ∈ E such that S−ε < a ≤ S.
Write down the infimum version of approximation theorem.

3 August 30

The other way I like to interpret the infimum is the following. Use the same
assumption by assuming E ⊂ R is nonempty and bounded from below. Consider the
set of all the lower bounds of E:

L := {l ∈ R | l ≤ x for all x ∈ E}.

Then set L ⊆ R is nonempty is bounded above. By the completeness axiom,
α = supL exists. Claim that the supremum α = inf E. For any x ∈ E, x is an upper
bound of L, thus α ≤ x meaning that α is a lower bound of E. For any lower bound
l of E, since l ∈ L we must have l ≤ α. Thus α is the greatest lower bound of E.
Therefore α = supL = inf E.

Let’s look at some examples.

Example 3.1. • E =
{
x ∈ R | x = 1 + (−1)n

n , n ∈ N
}

.

Depending on whether n is even or odd, we can write

x =

{
1 + 1

n if n is even;

1− 1
n if n is odd.
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Note that for any n ∈ N, 1 < 1 + 1/n ≤ 2 while 0 ≤ 1− 1/n < 1. Thus the set
E is both bounded from above and below. Actually, the minimum attains at
n = 1 (odd) and thus inf E = minE = 0. Since {1 + 1/n} is decreasing, then
the maximum attains at n = 2, with supE = maxE = 1 + 1/2 = 3/2.
• E = [0,

√
2] ∩Q.

First notice that 0 and
√

2 can be viewed as lower bound and upper bound of
set E, respectively. Moreover, inf E = minE = 0. Now claim that

√
2 is the

supremum of E. If there is an upper bound satisfying x ≤
√

2, then apply the
density of Q there must be a rational number q ∈ Q such that x ≤ q ≤

√
2

violating that x is an upper bound. Thus
√

2 must be the least upper bound.
• E =

{
n+ 1

n | n ∈ N
}
∪ {10}.

First of all E is not bounded from above since if N is an upper bound of E,
then N < ([N ] + 1) + 1

[N ]+1 ∈ E is a contradiction. E is clearly bounded

from below. Since for any n ∈ N, we have n+ 1
n ≥ 2 (simple AM-GM) with

inequality holds when n = 1. Thus inf E = minE = 2.
• E =

{
n+ 1

n | n ∈ N
}
∪ {1}. As the example above, E is not bounded from

above. And min{n+ 1/n | n ∈ N} = 2. Thus inf E = minE = min{2, 1} = 1.

Enlightened by the last example above, we can formulate in general:

Proposition 3.2. Given A,B ⊂ R bounded. Then A ∪B is bounded and sup(A ∪
B) = sup{supA, supB}.

Here are some other properties of sup/inf.

Proposition 3.3 (Monotonicity). Suppose A ⊆ B are two nonempty subsets of R.
(1) If B is bounded from above, then supA ≤ supB.
(2) If B is bounded from below, then inf A ≥ inf B.

Proof. I will only prove (1). If B is bounded from above, then any upper bound of
B is also an upper bound of A thus A is also bounded from above. Both supA and
supB exist by completeness axiom. Moreover supB is an upper bound of A thus
supA ≤ supB.

Let A,B ⊂ R. Define

A+B := {a+ b | a ∈ A, b ∈ B},
A−B := {a− b | a ∈ A, b ∈ B}.

Proposition 3.4. If A,B are nonempty subsets of R.
(1) sup(A+B) = supA+ supB.
(2) sup(A−B) = supA− inf B.

Write down the version for infimums yourself.
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Proof. First of all A + B is bounded from above if and only if A and B are both
bounded from above. Thus sup(A+B) exists if and only if supA and supB both
exist. In this case, for any a ∈ A and b ∈ B, we have

a+ b ≤ supA+ supB.

It implies sup(A+B) ≤ supA+ supB. For the other direction, apply the approxi-
mation theorem. For any ε > 0. There are a ∈ A and b ∈ B such that

supA− ε

2
< a, supB − ε

2
< b.

Thus supA + supB − ε < a + b for any ε > 0. Therefore we get supA + supB ≤
sup(A+B).

(2) can be proved using infection property the result from (1). Namely sup(A−
B) = supA+ sup(−B) = supA− inf B.

4 September 1

We can also define supremum and infimum of a real-valued function, i.e. a function
with range a subset in R, by taking the sup/inf of its range. Here is the definition.

Definition 4.1. Suppose f : A → R is a one-variable real-valued function with
bounded range. Then

sup
A

(f) = sup{f(x) | x ∈ A},

inf
A

(f) = inf{f(x) | x ∈ A}.

Straightforward properties are

Proposition 4.2. Suppose that f, g : A→ R and f ≤ g pointwisely, i.e. f(a) ≤ g(a)
for any a ∈ A.
• If g is bounded from above, then supA(f) ≤ supA(g);
• If f is bounded from below, then infA(f) ≤ infA(g).

Proof. If f ≤ g pointwisely and g is bounded from above on A, then for any a ∈ A,

f(a) ≤ g(a) ≤ sup
A

(g).

Thus supA(g) is an upper bound of f(A) meaning supA(f) ≤ supA(g).

Remark 4.3. • the condition supA(f) ≤ supA(g) cannot give any information
on the ordering of values f(a) and g(a) for a ∈ A. Also, even if we have the
strict inequality f < g pointwisely, it doesn’t mean we get supA(f) < supA(g)
strictly. For example let A = (−1, 1) and g ≡ 1 while f(x) = |x|.
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• In general, if we only have f ≤ g pointwisely (weak), we don’t have sup(f) ≤
inf(g). For example let f, g : [0, 1]→ R be given by f(x) = 3x and g(x) = 3x+1.
Clearly we have f(x) ≤ g(x) for any x ∈ [0, 1]. But sup(f) = 3, inf(f) = 1.
But if we assume f(x) ≤ g(y) for any x, y ∈ A, then we get sup(f) ≤ inf(g). It
is much clearer by drawing a graph.
Let me sketch the proof here. By way of contradiction if we have sup(f) > inf(g).
Then for any ε > 0, there are x, y ∈ A such that sup(f) − ε < f(x) and
g(y) < inf(g) + ε, i.e.

g(y)− ε < inf(g) < sup(f) < f(x) + ε

meaning
g(y)− f(x)− 2ε < inf(g)− sup(f).

By taking ε = (sup(f)− inf(g))/2 we have g(y)− f(x) < 0 for some x, y ∈ A
which is a contradiction.

Given two functions f, g : A→ R, Define

f + g := {f(x) + g(x) | x ∈ A}.

What is the order relation between supA(f + g) and supA f + supA g? Note that if
we view F = {f(x) | x ∈ A} and G = {g(x) | x ∈ A}, then

sup{f(x) + g(y) | x, y ∈ A} = supF + supG

can be easily deduced since F +G = {f(x) + g(y) | x, y ∈ A}.
But f + g ⊆ F +G so we of course get

sup
A

(f + g) ≤ sup(F +G) = sup{f(x) + g(y) | x, y ∈ A}

by monotonicity. But they may not be equal. Here is the idea. We want to construct
two different functions f, g which attain their maximums at different points in A.
For example, take f, g : [0, π/2]→ R given by

f(x) = sinx, g(x) = cosx.

Then

(f + g)(x) = sinx+ cosx =
√

2

(√
2

2
sinx+

√
2

2
cosx

)
=
√

2 sin
(
x+

π

4

)
≤
√

2.

But supA f = 1 = supA g and thus supA(f + g) =
√

2 < 2 = supA(f) + supA(g).
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5 Quiz 1

1. (a) (3pts) Let A be a nonempty subset of R. State the definition of the infimum
of A, in any of its equivalent forms.

(b) (2pts) State the density of rationals.

Proof. (a) m ∈ R is an infimum of the set A ⊆ R if it satisfies: (1) m is a lower
bound of A, i.e. for any a ∈ A, we have m ≤ a, and (2) For any lower bound
m′ of A, m′ ≤ m, or equivalently, for any m′ > m, there is an a ∈ A such that
a < m′, or equivalently, for any ε > 0, there is an a ∈ A such that a < m+ ε.

(b) That the set Q is dense in R means for any a, b ∈ R with a < b, there is a
rational number r ∈ Q such that a < r < b.

2. (5pts) Let A =

{
2 +

1

n
+

1

n2

∣∣∣∣n ∈ N
}

. Find inf A and prove your assertion.

Proof. First of all A is bounded from below, for instance by 2 since

2 < 2 +
1

n
+

1

n2

for all n ∈ N. Thus inf A exists. Claim that inf A = 2. For any ε > 0, by the
Archimedean Property, there exists a natural number N ∈ N such that 2/ε < N .
Thus we get an element 2 + 1/N + 1/N2 ∈ A such that

2 +
1

N
+

1

N2
≤ 2 +

1

N
+

1

N
= 2 +

2

N
< 2 + ε.

Therefore inf A = 2.

6 September 6

This week we start section about sequences. We say that a real sequence {xn} (which
is defined to be a function f : N → R by assigning n to xn) converges to a finite
L ∈ R if for any ε > 0 there is an N ∈ N such that |xn − L| < ε holds for all n ≥ N .
And we often write limn→∞ an = L or xn → L as n→∞. A sequence {xn} diverges
if for any L ∈ R there is an ε > 0 such that for any N ∈ N there is an n ≥ N
such that |xn − L| ≥ ε, though this is not the usual way to show some sequence
is divergent. Beside, the notion of divergence means “not convergent”, including
infinite limits. while convergence only refers to finite limits. Note that we say “a
limit of a sequence exists” if it is either finite or infinite. We will talk about them
later.

Let’s begin with some examples viewing limits of sequences by mainly using the
definition.
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Example 6.1. (1) limn→∞
(
3
(
1 + 1

n

))
= 3. For any ε > 0, by Archimedean

Property, there is an N ∈ N such that 3/ε < N . For any n ≥ N , we have∣∣∣∣3(1 +
1

n

)
− 3

∣∣∣∣ =
3

n
≤ 3

N
< ε.

(2)

{
1

n
+

sin(n)

n+ 1

}
→ 0 as n → ∞. First of all using the triangle inequality, we

have ∣∣∣∣ 1n +
sin(n)

n+ 1

∣∣∣∣ ≤ ∣∣∣∣ 1n
∣∣∣∣+

∣∣∣∣ 1

n+ 1

∣∣∣∣ (or simply < 2/n).

If using 2/n as a bound, then one can simply choose N = [2/ε] + 1. If using
the sum as a bound, then for any ε > 0, there is an N1 ∈ N with N1 ≥ 2/ε by
A.P. such that |1/n| ≤ |1/N1| < ε/2 for all n ≥ N1. There is also an N2 ∈ N
with N2 ≥ 2/ε− 1 by A.P. such that |1/(n+ 1)| ≤ |1/(N2 + 1)| < ε/2. Then
take N = max{N1, N2} ∈ N we have∣∣∣∣ 1n +

sin(n)

n+ 1

∣∣∣∣ ≤ 1

n
+

1

n+ 1
≤ ε

2
+
ε

2
= ε.

(3)

{
6n2 + 5

2n2 − 3n

}
→ 3 as n→∞. First of all, observe that∣∣∣∣ 6n2 + 5

2n2 − 3n

∣∣∣∣ =

∣∣∣∣ 9n+ 5

2n2 − 3n

∣∣∣∣ < 10n

n2
=

10

n

where the last inequality holds when n > 5 (since it is easy to check that
9n+ 5 < 10n iff n > 5 and 2n2− 3n > n2 iff n(n− 3) > 0). Thus for any ε > 0,
by A.P., there is an N1 ∈ N with N1 > 10/ε or N1 = [10/ε] + 1 if you want to
make it explicit. Take N = max{6, N1} ∈ N, then for any n ≥ N ,∣∣∣∣ 6n2 + 5

2n2 − 3n

∣∣∣∣ < 10

n
≤ 10

N
< ε.

(4) {1 + (−1)n} diverges. Suppose it converges to some finite real number L ∈ R.
For ε = 1, we can find N ∈ N such that for any n ≥ N ,

|1 + (−1)n − L| < 1.

But if n ≥ N is odd, then

|1 + (−1)n − L| = |L| < 1 ⇐⇒ −1 < L < 1;

if n ≥ N is even, then

|1 + (−1)n − L| = |2− L| < 1 ⇐⇒ 1 < L < 3.

It leads to a contradiction. Thus {1 + (−1)n} cannot be convergent.
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(5) The following example requires a little more work. Test the conv/div of the
sequence {sin(n) | n ∈ N}.
By way of contradiction, suppose that {sin(n)} converges to some finite L ∈ R.
Then sin(n− 1)→ L and sin(n+ 1)→ L as n→∞. By the limit theorem, we
have sin(n+ 1)− sin(n− 1)→ 0 as n→∞. But

sin(n+ 1)− sin(n− 1) = 2 sin(1) cos(n).

Thus 2 sin(1) cos(n) → 0 as n → ∞. Since 2 sin(1) is a constant, we must
have cos(n)→ 0 as n→∞ and thus cos2(n)→ 0 as n→∞. By the identity
sin2(n) + cos2(n) = 1, we have sin2(n) → 1 as n → ∞. Together with the
assumption, it implies L2 = 1. Now consider

sin(n+ 1) = sin(n) cos(1) + sin(1) cos(n)→ L, n→∞

where the second term approaches to 0 eventually and the first term approaches
to cos(1)L eventually. It yields cos(1)L = L which implies cos(1) = 1 which is
a contradiction. Therefore {sin(n)} is not convergent.

7 September 8

Besides the algebraic property we have used multiple times in the above examples, we
also have the comparison properties for sequences by comparing their tail terms. One
of the theorems might shorten our find-the-limit procedure is the squeeze theorem.
It tells us that if an ≤ bn ≤ cn holds eventually for sequences {an}, {bn}, and {cn},
and lim an = lim cn = L, then lim bn = L as well.

Here are some examples.

(0) Show lim n
2n = 0.

First we write 2n = (1 + 1)n with binomial expansion:

(1 + 1)n = 1 +

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
.

Then

2n >

(
n

2

)
=
n(n− 1)

2

holds eventually. Now we have

0 ≤ n

2n
≤ 2

n− 1

holds eventually. By squeeze theorem, we proved the limit is zero.

13



(1) Given a ∈ R with |a| < 1. Show lim an = limnan = 0.
We have seen the proof for the first limit during the lecture. If a = 0, then
the result is obvious. Now assume a 6= 0 with |a| < 1. Since 1/|a| > 1, we can
write

1

|a|
= 1 + h for some h > 0.

So for any n ∈ N,

1

|a|n
= (1 + h)n = 1 +

(
n

1

)
h+

(
n

2

)
h2 + · · ·+ hn.

We will use the second summand for the first limit and the third summand for
the second limit. In other words, we get

1

|a|n
> nh =⇒ 0 < |a|n < 1

nh
,

and
1

|a|n
>
n(n− 1)

2
h2 =⇒ 0 <

1

n|a|n
<

2

(n− 1)h2
.

Since 1/nh → 0 and 2/(n − 1)h2 → 0 eventually, by the squeeze theorem,
lim |a|n = limn|a|n = 0 which is equivalently lim an = limnan = 0.

(2) { n
√
n} → 1 as n→∞. First of all n

√
n ≥ 1, so we can write n

√
n = 1 + hn for

all n ∈ N with hn ≥ 0. Using the binomial expansion, for n > 1,

n = (1 + hn)n ≥ 1 + nhn +
n(n− 1)

2
h2n >

n(n− 1)

2
h2n,

and thus

h2n <
2

n− 1
=⇒ 0 < hn <

√
2

n− 1
.

By the squeeze theorem, we proved hn → 0 as n→∞ which means n
√
n−1→ 0

as n→∞. Therefore n
√
n→ 1 as n→∞.

(3) Using the squeeze theorem, one can also deduce the following nice result.
Suppose we have a nonempty subset E ⊂ R. If E is bounded from above, then
by the Completeness Axiom, a := supE exists. We can actually construct a
sequence {an} ⊂ E fully contained in E with limit a = supE. Here is the
construction. For each n ∈ N, take ε = 1/n > 0, there is an an ∈ E such that

a− 1

n
< an ≤ a.

Apply the squeeze theorem, we get an → a = supE eventually as desired.
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8 Quiz 2

1. (5pts) State the definition of the limit of a sequence {an} ⊂ R.

Proof. A sequence {an} in R converges to a finite L ∈ R if for any ε > 0, there is
an N ∈ N such that |an − L| < ε for all n ≥ N .

2. (5pts) Prove using the definition of the limit (find N(ε) for every ε > 0) that

lim
n→∞

n cosn

n2 + 1
= 0.

Proof. For any ε > 0, by Archimedean Property, there is an N ∈ N such that
N > 1/ε. Then for all n ≥ N , we have∣∣∣∣n cosn

n2 + 1

∣∣∣∣ ≤ n

n2 + 1
<

n

n2
=

1

n
≤ 1

N
< ε

which shows the limit equals to 0.

9 September 13

We call a real sequence {an} ⊂ R diverges to ∞ if for any positive M > 0 there
exists an N ∈ N such that an > M for all n ≥ N . Or simply, an > M eventually for
all M > 0. Likewise, we way a real sequence {an} diverges to −∞ if for any negative
M < 0 there exists an N ∈ N such that an < M for all n ≥ N . Or simply an < M
eventually for all M < 0.

Here are some (non)examples of infinite limits:

Example 9.1. • n2 →∞ as n→∞. This is because n2 > M eventually for all
M > 0, for example take N >

√
M .

• {an} = {1, 2, 1, 3, 1, 4, 1, 5, 1, 6, · · · } does NOT diverge to ∞. For example, if
we take M = 10, no matter what value N ∈ N takes, the term 1 always occurs
at every odd position.
• {lnn} → ∞ as n→∞. This is because lnx is increasing and lnn > ln eM = M

eventually for every M > 0, for example take N > eM .

Now let us consider a special type of sequences, monotonic sequences. Given a
real sequence {an}, recall that
• {an} is called eventually increasing if am ≤ an holds eventually for m ≤ n;
• {an} is called eventually decreasing if am ≤ an holds eventually for m ≥ n.

For (eventually) monotonic sequences, convergence is closely related (equivalent) to
boundedness. This is the monotonic convergence theorem.

Theorem 9.2. Given a real sequence {an}.
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• Suppose {an} is eventually increasing. Then {an} converges if and only if it is
bounded from above;
• Suppose {an} is eventually decreasing. Then {an} converges if and only if it is

bounded from below.

Note that there are multiple ways to check monotonicity for a given sequence.
For example, suppose {an} is a real sequence with an > 0 for all n or eventually, to
check {an} is increasing is equivalent to check
• an ≤ an+1 eventually;
• an+1/an ≥ 1 eventually.
The above can also be easily reformulated to eventually decreasing sequences and

sequences eventually with negative terms.
Here are some examples:

(1) an =
n

2n
.

Notice that {an} is a sequence with positive terms, and

an+1

an
=
n+ 1

2n+1

2n

n
=
n+ 1

2n
≤ n+ n

2n
= 1.

It implies that {an} is decreasing. Moreover {an} is bounded from below, and
thus it converges.

(2) an =
3n

1 + 32n
.

Notice that an > 0 holds for all n ∈ N. Moreover

an+1

an
=

3n+1

1 + 32(n+1)

1 + 32n

3n
= 3

1 + 9n

1 + 9n+1
< 3

1 + 9n

3(1 + 9n)
= 1

where the last inequality holds for all n since 1 + 9n+1 > 3 + 3 · 9n holds for
all n ∈ N. This show that {an} is strictly decreasing. Since it is also bounded
from below, it is convergent.

(3) an =
1 · 3 · 5 · · · (2n− 1)

2nn!
.

By direct calculation we get

an+1 =
(2n+ 1)!!

2n+1(n+ 1)!
=

(2n− 1)!!

2nn!

2n+ 1

2(n+ 1)
= an

2n+ 1

2(n+ 1)
< an

holds for all n ∈ N. Thus {an} is decreasing and it is also bounded from below
by zero, so it converges.

Sequences sometimes may not be given explicitly in terms of the index n, like
Fibonacci sequence (even if we can write down its general form). For the sequences
with term an+1 defined by expression with an is called recursive sequences. Given a
recursive formula together with the initial term a1, one can write down each term in
this sequence. But the convergence of such recursive sequence may or may not rely
on the value of the initial element. Here are some examples.
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(1) an+1 = a2n where a1 = α.
We first consider the case when 0 < α < 1. Then an ∈ (0, 1) for all n ∈ N.
Moreover, an+1 = a2n < an shows that {an} is decreasing. And it is bounded
from below by zero, so it converges with limit L satisfying L = L2. So the limit
L is either 0 or 1. But since the sequence is decreasing the limit cannot be 1
(make it rigorous by taking ε < 1− α for instance). Thus the limit is zero.
When α > 1. Then an > 1 for all n ∈ N. Moreover 1 < an < a2n = an+1 means
that {an} is increasing. If it converges then the limit has to be either one or
zero but both are impossible (why?). Thus the sequence is unbounded from
above and it doesn’t converge.

(2) an+1 =
√

2 + an with a1 =
√

2. One can use induction to show the sequence is
strictly increasing and bounded from above.

Claim that {an} is strictly increasing. First of all a2 =
√

2 +
√

2 >
√

2 = a1.
And assume ak+1 > ak. Then ak+2 =

√
2 + ak+1 >

√
2 + ak = ak+1, done.

Now claim that it is bounded from above by 3. Firstly a1 =
√

2 < 3. Assume
ak < 3. Then ak+1 =

√
2 + ak <

√
5 < 3, done. We showed that {an} is

strictly increasing and bounded from above, thus it converges with limit L
satisfying L =

√
2 + L. Therefore L is either 2 or −1. But {an} is a positive

sequence so the limit has to be 2.

10 September 15

Let us first finish the example from last time:
(3) an+1 = sin(an) without condition on a1.

Draw the graphs of y = sin(x) and y = x, notice that
i) −1 ≤ an ≤ 1 for all n ≥ 2. Thus {an} is bounded.

ii) In [−1, 1], x and sin(x) will have the same sign, i.e. either both positive
or both negative. It means that for n ≥ 2, all an’s share the same sign
since sin(an) = an+1 and an have the same sign.

iii) If x ≥ 0, then sin(x) ≤ x; If x ≤ 0, then sin(x) ≥ x.
Now we consider two cases.

i) If a2 = sin(a1) ∈ [0, 1]. Then all an with n ≥ 2 are nonnegative. Namely
0 ≤ an ≤ 1 for all n ≥ 2. Then an+1 = sin(an) ≤ an, so {an} is decreasing.
And it converges to zero.

ii) If a2 = sin(a1) ∈ [−1, 0]. Then all an with n ≥ 2 are not positive. Namely
−1 ≤ an ≤ 0 for all n ≥ 2. Then an+1 = sin(an) ≥ an, ans thus {an} is
increasing. And it converges to zero also.

This is an example of recursive sequence with convergence property doesn’t
depend on the value of the initial element.

Proposition 10.1. If {xn} → x as n→∞, then
(1) {sinxn} → sinx as n→∞;
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(2) {cosxn} → cosx as n→∞.

Proof. For any ε > 0, since {xn} → x as n →∞, there exists an N ∈ N such that
|xn − x| < ε whenever n ≥ N . Then

| sinxn − sinx| =
∣∣∣∣2 cos

(
xn + x

2

)
sin

(
xn − x

2

)∣∣∣∣
≤ 2

∣∣∣∣sin(xn − x2

)∣∣∣∣
≤ 2

∣∣∣∣xn − x2

∣∣∣∣ < ε.

For cosine, one needs to use the formula:

cosxn − cosx = −2 sin

(
xn + x

2

)
sin

(
xn − x

2

)
.

Finally let’s end with two examples applying fundamental limits.

Example 10.2. Find the limits of the following sequences by applying some funda-
mental limits:

(1)


(

1 +
2√
n

)√
n2+5
n+3

.

Since √
n2 + 5

n+ 3
=

√
n2(1 + 5/n2)

n(1 + 3/n)
=
√
n

√
1 + 5/n2

1 + 3/n

we have (
1 +

2√
n

)√
n2+5
n+3

=

((
1 +

2√
n

)√n)√
1+5/n2

1+3/n

→ e2

as n→∞.

(2)

{
π6/n2 − 1

sin(3/n2)

}
.

We rewrite

π6/n2 − 1

sin(3/n2)
=
π6/n2 − 1

6/n2
6/n2

sin(3/n2)
= 2

(
π6/n2 − 1

6/n2

)(
3/n2

sin(3/n2)

)
→ 2 lnπ

as n→∞.
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11 Quiz 3

1. (a) (2pts) State the definition of an eventually decreasing sequence.
(b) (3pts) State the Monotonic Convergence Theorem.

Proof. (a) We say a sequence {an} eventually decreasing if there exists some
N ∈ N such that an ≥ an+1 holds for all n ≥ N .

(b) Given a sequence {an} ⊂ R. If {an} is eventually increasing, then it is
bounded from above if and only if it converges. If {an} is eventually decreasing,
then it is bounded from below if and only if it converges.

2. (5pts) Prove using the Monotonic Convergence Theorem that the sequence {an} ⊂
R given by

an =

(
1− 1

2

)(
1− 1

22

)
· · ·
(

1− 1

2n

)
converges.

Proof. First notice that (1− 1/2n) is positive for each n ∈ N. Thus an > 0 for all
n ∈ N, i.e. {an} is bounded from below by zero. Moreover, for each n ∈ N,

an+1 = an

(
1− 1

2n+1

)
≤ an

implies that {an} is monotonically decreasing. By the Monotonic Convergence
Theorem, the sequence {an} converges.

12 September 20

Given a real sequence {an}. Let n1, n2, · · · be positive integers such that nk < nk+1

for each k ∈ N then the sequence {ank
} = {an1

, an2
, · · · } is called a subsequence of

{an}. A subsequence of {an} can also be characterized by a function f : N → N
given by k 7→ nk, meaning that the k-th term in the subsequence is the nk-th term
in the original sequence. Moreover, based on how subsequence is constructed, nk ≥ k
always holds for all k ∈ N.

One of the nice properties regarding subsequences is that a sequence {an} con-
verges to a finite limit a if and only if every subsequence of {an} converges to a.
This gives an easy and efficient way to check a given sequence is not convergent.

This also leads to the notion of limit points of a sequence. A sequence may not
converge but it may have convergent subsequence. A real number a ∈ R is called a
limit point of {an} if there exists a subsequence of {an} with limit a. So, one can
show that a real sequence is convergent if and only if it is bounded and has exactly
one limit point.

Here are some standard examples.
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Example 12.1. (1) an = 3

(
1− 1

n

)
+ 2(−1)n.

Take subsequences {a2k} and {a2k+1}. One approaches to 5 but the other
approaches to 1. 1 and 5 are two limit points of {an}. And such sequence is
not convergent.

(2) an = sin

(
π 3
√
n

2

)
.

Take subsequences {a(4k)3} and {a(4k+1)3}. One approaches to 0 and the other
approaches to 1. Thus the sequence is not convergent. What are the limit
points of this sequence?

(3) Define

an =

{
n if n is odd,

1/n if n is even.

Such sequence {an} contains an unbounded subsequence {a2k+1} so it is not
convergent. But {an} does have one limit point which is zero.

(4) Consider {r1, r2, · · · } as an enumeration of rational numbers Q. Then every
element a ∈ R is a limit point of {rn}. This is because for each k ∈ N the
interval (a, a+ 1/k) contains infinitely many rational numbers. So we could
construct a subsequence {rnk

} with |rnk
− a| < 1/k for all k ∈ N.

Actually, one can show that every sequence in R has a monotonic subsequence.
We can then easily conclude that every bounded sequence in R has a convergent
subsequence (Bolzano-Weierstrass Theorem). The standard way of proving the
Bolzano-Weierstrass Theorem is to apply the Nested Interval Property.

Make sure you know how to apply Archimedean Property to show for example

∞⋂
n=1

[
− 1

n
, 1 +

1

n

]
= [0, 1].

In general, it is not easy to show a given sequence converges since one has to
guess the limit first. But Cauchy sequences provides a way to avoid the guesswork.

A sequence {an} in R is call a Cauchy sequence if for any ε > 0 there is an N ∈ N
such that |an − am| < ε for all m,n ≥ N . A real sequence is Cauchy if and only if it
converges (Cauchy Criterion).

Example 12.2. (1) Given a sequence {an} ⊂ R with property

|an − an+1| ≤ rn

for all n ∈ N and a fixed 0 < r < 1.
Sequences with this property is convergent. We want to show such sequence is

20



Cauchy. Assume m > n and consider

|an − am| ≤ |an − an+1|+ |an+1 − an+2|+ · · ·+ |am−1 − am|
≤ rn + rn+1 + · · ·+ rm−1

= rn(1 + r + · · ·+ rm−n−1)

= rn
1− rm−n

1− r
=
rn − rm

1− r
≤ rn

1− r
.

It is easy to find N ∈ N such that rn

1−r < ε for all n ≥ N since r ∈ (0, 1).
(2) Consider

an =
cos 1

1 · 2
+

cos 2

2 · 3
+ · · ·+ cosn

n · (n+ 1)
.

Claim {an} is Cauchy. Assume m > n,

|an − am| ≤
| cos(n+ 1)|

(n+ 1)(n+ 2)
+
| cos(n+ 2)|

(n+ 2)(n+ 3)
+ · · ·+ | cos(m)|

m(m+ 1)

≤ 1

(n+ 1)(n+ 2)
+

1

(n+ 2)(n+ 3)
+ · · ·+ 1

m(m+ 1)

=
1

n+ 1
− 1

n+ 2
+

1

n+ 2
− 1

n+ 3
+ · · ·+ 1

m
− 1

m+ 1

=
1

n+ 1
− 1

m+ 1
<

1

n
.

Then we can take for example N = [1/ε] + 1.

Note that if a real sequence {an} is Cauchy, then by definition

|an − an+1| < ε

holds eventually for any ε > 0. But the converse is NOT true.

Example 12.3. (1) Take an =
√
n. Then

an+1 − an =
√
n+ 1−

√
n =

1√
n+ 1 +

√
n
→ 0

as n→∞. But {an} is not Cauchy since is it not even bounded.
(2) Take an = lnn. It is not Cauchy since it is not bounded. But

ln(n+ 1)− lnn = ln
n+ 1

n
→ ln 1 = 0

as n→∞.
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13 September 22

Showing a real sequence is Cauchy instead of proving convergence directly is often
used when the limit of such sequence is not so easy to guess. Even though we can
prove the convergence of the following sequence directly we prove it is Cauchy using
the definition of Cauchy sequences just for practice.

Example 13.1. Consider the sequence an = n2

n2+1 . For any ε > 0, there exists
some natural number N ∈ N such that 2/ε < N by Archimedean Property. For any
n,m ≥ N we have

|an − am| =
∣∣∣∣ n2

n2 + 1
− m2

m2 + 1

∣∣∣∣
=

∣∣∣∣1− 1

n2 + 1
− 1 +

1

m2 + 1

∣∣∣∣
≤ 1

n2 + 1
+

1

m2 + 1

<
1

n
+

1

m
≤ 2

N
< ε.

This shows that the sequence {an} is Cauchy.

The following is also a nice property of subsequences. Roughly speaking, the
subsequences {a2k} and {a2k+1} of even and odd terms respectively can give us
enough information about the convergence of {an}.

Proposition 13.2. Given a sequence {an} ⊂ R. If both subsequences {a2k} and
{a2k+1} converge to the same limit, say L, then {an} converges to L.

Proof. For any ε > 0, there exists an N1 ∈ N such that for all even indices 2k ≥ N1

|a2k − L| < ε.

There also exists N2 ∈ N such that for all odd indices 2k + 1 ≥ N2

|a2k+1 − L| < ε.

Now take N = max{N1, N2}, then for any n ≥ N , no matter whether n is even or
odd, we always have |an − L| < ε. It implies that {an} converges to the limit L.

The above proposition provides an idea of constructing an example in Homework
2 Problem 4(b). We want to construct a real sequence {an} with limit 1 and an < 1
for all n ∈ N, but it is not eventually increasing. In other words, we want a convergent
sequence “wiggling” towards 1 but strictly less than 1. The following two graphs
gives a basic idea of construction.
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x

y

For the first graph you could take your x values discretely as 1, 1/2, 1/3, · · · , 1/n, · · · ,
and plug into two functions(lines) alternately given by y = 1−C1x and y = 1−C2x
for some positive constants C1, C2. The constants Ci or the slopes of lines are
manageable to guarantee the sequence to be not eventually increasing.

Or by taking reciprocal, or you don’t like lines, you could also consider hyperbola
in the following way:

x

y

For example, we can take two hyperbolas y = 1− C1/x and y = 1− C2/x and
plug in 1, 2, · · · , n, · · · discretely and alternately, to get the sequence. The constants
C1, C2 are still manageable to make the sequence to be not eventually increasing.
Note that the hyperbolas you choose should have horizontal asymptote at y = 1 to
ensure the limit is one. Two hyperbolas (or lines in the first graph) can be made
to correspond to the even and odd subsequences, i.e. use (−1)n for example. Thus
both these subsequences will share the same limit 1, by the proposition proved above,
we get the limit of the sequence we constructed by jumping back and forth on two
curves/lines is also 1. I will let you figure out how to make the example explicit.

Let’s move on to the new chapter. Before doing the limits of functions, let’s recall
the notion of cluster points and isolated points of a subset in R.

Given a subset E ⊆ R. Then x ∈ R is
• an isolated point of E if x ∈ E and there exists δ > 0 such that E∩(x−δ, x+δ) =
{x};

• a cluster point of E if for every δ > 0 the interval (x − δ, x + δ) contains a
point in E which is distinct from x.

By definition, an isolated point of E must be in E. But a cluster point may not
be an element in E.
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Example 13.3. • Consider the subset E = (1, 2) ∪ (2, 3) ∪ {4}.
The set of cluster points of E, denoted by E′ = [1, 3]. And 4 is the only isolated
point of E.
• Consider the subset E = {1/n | n ∈ N}.

Every point of E is an isolated point since one can always find a sufficient
small interval about 1/n which does not contain 1/m for any m 6= n. The only
cluster point of E is 0 which is not an element in E. Since every open interval
about 0 contains 1/n for sufficiently large n.
• Consider Q ⊂ R.

The set of rationals has no isolated point. And every real number is a cluster
point of Q.

14 Quiz 4

1. (1) (2pts) State the Bolzano-Weierstrass Theorem.
(2) (3pts) State the definition of a Cauchy sequence {an} ⊂ R.

Proof. (1) Every bounded sequence in R has a convergent subsequence.
(2) A real sequence {an} ⊂ R is Cauchy if for any ε > 0 there exists an N ∈ N

such that for any n,m ≥ N , |an − am| < ε.

2. (5pts) Prove that the sequence {an} given by

an =
n · (−1)b

n
3 c + 2

n+ 1

is not convergent.

Proof. Take two subsequences {a6k} and {a3(2k+1)}. Then

a6k =
6k(−1)2k + 2

6k + 1
=

6k + 2

6k + 1
→ 1, as k →∞;

a6k+3 =
(6k + 3)(−1)2k+1 + 2

6k + 3 + 1
=
−(6k + 3) + 2

6k + 4
→ −1, as k →∞.

Since 1 6= −1 the sequence {an} cannot be convergent.

15 September 28

In the new chapter we will focus on real valued functions, Recall that a function
is a subset f ⊂ A × B of the cartesian product such that for any a ∈ A there is
exactly one element b ∈ B such that (a, b) ∈ f . We have introduced the concept of
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cluster point of a given subset of R. Namely given a subset A ⊆ R, we call a ∈ R
a cluster point of the set A if for any ε > 0 there is a point in A ∩ (a − ε, a + ε)
other than a itself. Equivalently, if there is a sequence contained fully in A \ {a}
with limit equaling a. Or equivalently, for any ε > 0 there is some x ∈ A such that
0 < |x− a| < ε.

In this case, we will have sufficient amount of points near a to study the behavior
of a function f : A→ B when x approaching to such cluster point a.

Given a function f : A→ R with a ∈ R a cluster point of A (may not be a point
of A). We have the following types of limit when x→ a, x→ a− and x→ a+:

(1) We say a limit of f(x) as x tends to a exists if there is a real number L such that
for any ε > 0 there exists a δ > 0 such that for any x ∈ A with 0 < |x− a| < δ
we have |f(x)− L| < ε. Denote by limx→a f(x) = L.

(2) When restricting the above on (−∞, a)∩A we get the definition of limx→a− f(x) =
L. Namely for any ε > 0 there exists some δ > 0 such that for any x ∈ A with
a− δ < x < a we have |f(x)− L| < ε.

(3) Likewise we can define limx→a+ f(x) = L by restricting on (a,∞) ∩A.

Note that a limit is unique whenever it exists. And we also have the sequential
characterization by saying that limx→a f(x) = L if and only if for any sequence
{xn} ⊂ A \ {a} we have f(xn) → L as n → ∞. The sequential argument is often
used to show that the limit of a function does NOT exist.

We can also define the limit of f when x tends to±∞ if (c,∞) ⊂ A or (−∞, c) ⊂ A
for some c ∈ R. Moreover, we can define infinite limits, in other words, define the
function f(x) converges to ±∞.

(4) limx→∞ f(x) = L means for any ε > 0 there exists an M ∈ R such that x > M
implies |f(x)− L| < ε. One can define limx→−∞ f(x) = L similarly.

(5) limx→a f(x) = ∞ means that for any M ∈ R there exists a δ > 0 such that
for any x ∈ A with 0 < |x − a| < δ we have f(x) > M . One can define
limx→a f(x) = −∞ similarly.

Her are some examples:

Example 15.1. • Consider a function f : R→ R given by

f(x) =

{
x2 if x ∈ Q;

x if x /∈ Q.

Check whether limx→1 f(x) and limx→2 f(x) exist or not.
First of all both 1 and 2 are cluster points of the domain R. And for the limit
as x tends to 1, we consider |f(x)− 1| (with some guesswork by looking at the
graph). We can write

|f(x)− 1| =

{
|x2 − 1| = |x+ 1||x− 1| if x ∈ Q;

|x− 1| if x /∈ Q.
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If we consider 0 < |x − 1| < 1 (interval centered at 1 with radius 1), then
|x+ 1| = |x− 1 + 2| ≤ |x− 1|+ 2 < 3. In this case we have

|x2 − 1| = |x+ 1||x− 1| < 3|x− 1|.

For any ε > 0, one can take δ = min{1, ε/3} such that for any x ∈ R with
0 < |x− 1| < δ, if x ∈ Q, then |f(x)− 1| = |x+ 1||x− 1| < 3|x− 1| < ε/3 < ε;
if x /∈ Q, we have |f(x)− 1| = |x− 1| < ε.
For the limit as x tends to 2, apply the density of Q and Qc in R. Namely
there exist sequence {an} ⊂ Q \ {2} and {bn} ⊂ Qc with an → 2 and bn → 2
as n→∞. But f(an) = a2n → 4 and f(bn) = bn → 2 as n→∞ which are not
equal. So by the sequential characterization the limit of f as x tends to 2 does
NOT exist.
• Consider the function f : R→ R given by

f(x) = x3 + 2x+ 1.

Claim that limx→1 f(x) = 4. Consider

|f(x)− 4| = |x3 + 2x− 3| = |x− 1||x2 + x+ 3|.

Notice that when |x−1| < 1, i.e. x ∈ (0, 2), since x2+x+3 = (x+1/2)2+11/4,
this quadratic form is increasing on (0, 2) and is always positive on (0, 2). Thus
|x2 + x + 3| < 9 when |x − 1| < 1. Then for any ε > 0, one can take
δ = min{1, ε/9}. For any 0 < |x− 1| < δ, we have

|f(x)− 4| = |x− 1||x2 + x+ 3| < 9|x− 1| < ε.

• Prove the one-sided limit

lim
x→1+

x− 3

3− x− 2x2
=∞.

First of all note that

f(x) :=
x− 3

3− x− 2x2
=

x− 3

(1− x)(3 + 2x)
.

Our goal is that for any M > 0 find δ > 0 such that for any x with 1 < x < 1+δ,
we have f(x) > M . For 1 < x < 1 + δ, i.e. −δ < 1− x < 0, one always have

1

1− x
< −1

δ
.

For 1 < x < 1 + 1 = 2, one have −2 < x− 3 < −1 and 5 < 2x+ 3 < 7. So

1

7
<

1

2x+ 3
<

1

5
.
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Take δ = min{1, 1/7M}, we have

x− 3

(1− x)(3 + 2x)
>

x− 3

7(1− x)
>

−1

7(1− x)
>

1

7δ
> M.

• Show that

lim
x→∞

sin(x)

x2
= 0.

For any ε > 0 take M = 1/
√
ε so that for any x > M we have∣∣∣∣ sin(x)

x2

∣∣∣∣ ≤ 1

x2
<

1

M2
= ε.

• Find the following limit

lim
x→0

x cos

(
x2 + 1

x3

)
.

First even if x = 0 is not in the domain of such function but it is a cluster
point so we can still discuss its limit. Moreover we have

0 <

∣∣∣∣x cos
x2 + 1

x3

∣∣∣∣ < |x|.
Since |x| → 0 as x→ 0 by the squeeze theorem, we showed the limit is zero.
• Consider whether the following limit exist or not:

lim
x→1

1

lnx
.

Again x = 1 is not in the domain but it is a cluster point so it makes sense to
talk about this limit. Take sequences an = 1 + 1/n approaching to 1 as n→∞,
and bn = 1− 1/n also approaching to 1 as n→∞. But 1/ ln(an)→∞ while
1/ ln(bn) → −∞ as n → ∞ thus the limit does NOT exist by the sequential
characterization.

16 October 4

We also have the corresponding algebraic properties of limits of functions. All of
the followings can be shown by using the sequential argument but they can also be
shown directly by definition.

Theorem 16.1. Suppose that f, g : A→ R are functions and a is a cluster point of
A. Assume that the limits

lim
x→a

f(x) = L, lim
x→a

g(x) = M
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both exist. Then

lim
x→a

kf(x) = kL, for k ∈ R;

lim
x→a

[f(x) + g(x)] = L+M ;

lim
x→a

[f(x)g(x)] = LM ;

lim
x→a

f(x)

g(x)
=

L

M
, if M 6= 0.

For algebraic operations on infinite limits, consider the following two cases and
check whether true or not:

(i) If f, g are both finite-valued on some open interval (a − 1, a + 1). Assume
limx→a f(x) = 0, do we have f(x)g(x)→ 0 as x→ a?
“Finite-valued” here means that the function only takes values in R. A finite-
valued function may NOT be bounded. For example consider f(x) = 1/x, it is
not bounded on its domain but it is finite-valued.
The statement is false since we can take f(x) = x and g(x) as

g(x) =


1

x
if x 6= 0;

0 if x = 0.

Consider a = 0. Note that g(x) is unbounded but is finite-valued. And
limx→0 f(x) = 0 but

f(x)g(x) =

{
1 if x 6= 0;

0 if x = 0.

Therefore f(x)g(x)→ 1 as x tends to 0.
(ii) If f, g are both finite-valued and g is bounded on the open interval (a−1, a+ 1).

Assume limx→a f(x) = 0, do we have f(x)g(x)→ 0 as x→ a?
If we put an extra bounded condition on g then the statement is true. Since g
is bounded on (a − 1, a + 1) there is M > 0 such that |g(x)| ≤ M whenever
x ∈ (a− 1, a+ 1). Since limx→a f(x) = 0 for any ε > 0 there exists δ > 0 such
that for any 0 < |x− a| < δ we have |f(x)| < ε/M . Then

|f(x)g(x)| ≤M |f(x)| < ε

whenever 0 < |x− a| < δ. It shows limx→a[f(x)g(x)] = 0 as desired.
In general we have the following properties for infinite limits. Assume f, g : A→ R

and a is a cluster point of A:

• If limx→a f(x) = L > 0, and limx→a g(x) = ∞. Then limx→a f(x)g(x) = ∞.
Give example that the result may fail if L = 0.
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Proof. For any M > 0 we want to find δ > 0 such that x ∈ A and 0 < |x−a| < δ
imply f(x)g(x) > M . First there exists δ1 > 0 such that f(x) > L/2 for all
x ∈ A(why?) and 0 < |x − a| < δ1. There also exists δ2 > 0 such that
g(x) > 2M/L for all x ∈ A and 0 < |x − a| < δ2. Take δ = min{δ1, δ2} then
x ∈ A with 0 < |x− a| < δ implies

f(x)g(x) >
L

2

2M

L
= M.

This proves the claim. But the conclusion may not hold if L = 0 for example
take f(x) = 1/x and g(x) = x and consider x→∞.

• Suppose limx→a f(x) = ∞ and limx→a g(x) = L finite. Then limx→a[f(x) −
g(x)] =∞. If both limits are∞, give example such that limx→a[f(x)−g(x)] 6=
∞.

Proof. For any M > 0. There exists δ1 > 0 such that |g(x)− L| < 1 whenever
x ∈ A and 0 < |x−a| < δ1. Also there exists δ2 > 0 such that f(x) > M+1+|L|
whenever x ∈ A and 0 < |x− a| < δ2. Take δ = min{δ1, δ2}, then

f(x)− g(x) > M + 1 + |L| − 1− L = M + |L| − L ≥M.

But the result may not hold if both have limit∞. For example take f(x) = 1+x
and g(x) = 2 + x and let x→∞.

N.B. There is one thing that I want to mention here is that given a sequence
{an}, we can also view it as a set S consisting terms in {an}. We have seen the
concept of a limit point of a sequence, namely, if a is a limit point of {an} if there
exists a subsequence with limit a. If view it is a set, we also define a cluster point
of a set, which is a point on which every neighborhood contains a point in S other
than a. It is not hard to show if a is a cluster point of S as a set, then it is also a
limit point of {an} as a sequence. But consider an = (−1)n we know ±1 are limit
points of sequence {an} but as a set S = {−1, 1} where ±1 are isolated points not
cluster points. So the converse may not be true.

Now let us move on to continuity of a real-valued function.
Given a function f : A→ R and a ∈ A. We say f is continuous at a if for any

ε > 0 there exists δ > 0 such that |x− a| < δ and x ∈ A imply |f(x)− f(a)| < ε.

Remark 16.2. • a must be a point in the domain A to define the continuity of
f at a.
• (not so interesting) If a ∈ A is an isolated point of A, then f is automatically

continuous at a. (why?)
• In particular, if a ∈ A is a cluster point of A, then f is continuous at a if and

only if limx→a f(x) = f(a).
• (Sequential) If a ∈ A is a cluster point of A then f is continuous at a if and

only if limn→∞ f(an) = f(a) for every sequence {an} ⊆ A with limit a.
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Some examples:

Example 17.1. (1) Consider f : R→ R given by

f(x) =

{
sin(1/x) if x 6= 0,

0 if x = 0.

We have seen in class that f is not continuous at 0 because the limx→0 f(x)
does not exist using sequential argument. Moreover it is continuous away from
0.

(2) Consider f : R→ R defined by

f(x) =

{
x sin(1/x) if x 6= 0;

0 if x = 0.

The function f is continuous on R. We will only prove continuity at x = 0 for
now. This is due to

|f(x)− f(0)| = |x sin(1/x)| ≤ |x|.

so f(x) → f(0) as x → 0. What if f(0) is defined to be any nonzero real
number? Is the function still continuous at 0?

(3) Let f : D → R where D = {1/n | n ∈ N} ∪ {0}. Then f is continuous at every
1/n for n ∈ N since each 1/n is an isolated point of D. If f is continuous at 0,
then f(1/n)→ f(0) by the sequential condition. If f(1/n)→ f(0) as n→∞,
then for any ε > 0, there exists N ∈ N such that |f(1/n)− f(0)| < ε whenever
n ≥ N . Take δ = 1/(N + 1) > 0. Then for any x ∈ D with |x| < δ = 1/(N + 1)
means for all x = 1/n for all n ≥ N + 2, we have

|f(x)− f(0)| < ε.

It shows f is continuous at 0. Therefore f is continuous at 0 if and only if
f(1/n)→ f(0) as n→∞.

(4) Let a ∈ R. Consider the function f : R→ R given by

f(x) =

{√
x if x > 0,

x+ a if x ≤ 0.

For what value of the constant a is the function f continuous at 0?
Since x = 0 is a cluster point of the domain R, f is continuous at x = 0 if and
only if limx→0 f(x) = f(0) = a. limx→0 f(x) = a requires

lim
x→0+

√
x = a.

Thus a = 0 is the only value to make f continuous at 0.
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Another nice problem: Consider a function f : [0,∞)→ R which is assumed to
be continuous, and with limx→∞ f(x) = 1. Then f is bounded over [0,∞). One
cannot apply the extreme value theorem on [0,∞) since [0,∞) is not closed and
bounded. But since limx→∞ f(x) = 1 there exists M > 0 such that for all x > M ,
|f(x) − 1| < 1 meaning that |f(x)| ≤ |f(x) − 1| + 1 < 2 on (M,∞). Now we can
apply the extreme value theorem on [0,M ] which is closed and bounded. There
exists K > 0 such that |f(x)| ≤ K for all x ∈ [0,M ]. Thus for all x ∈ [0,∞),
|f(x)| ≤ max{2,K} which shows f is bounded.

18 Quiz 5

1. (1) (2pts) Given a set E ⊆ R. State the definition of a ∈ R being a cluster point
of E.

(2) (3pts) Given a function f : E → R and a cluster point a of the domain E ⊆ R.
State the definition of the one-sided infinite limit

lim
x→a+

f(x) = −∞.

Proof. (1) a ∈ R is a cluster point of the set E if for any δ > 0, the intersection
(a− δ, a+ δ) ∩ (E \ {a}) is nonempty.

(2) limx→a+ f(x) = −∞ if for any M < 0 there is a δ > 0 such that f(x) < M
whenever a < x < a+ δ.

2. (5pts) Use the sequential characterization to prove that the limit

lim
x→1

sgn

(
sin

(
3

x− 1

))
does not exist. Note that sgn : R→ {−1, 0, 1} is the sign function given by

sgn(x) =


−1 if x < 0;

0 if x = 0;

1 if x > 0.

Proof. Take sequences

an = 1 +
3

2πn
, bn = 1 +

3

2πn+ π
2

.

Both has limit 1 as n→∞. But

sgn

(
sin

(
3

an − 1

))
= sgn(sin(2πn)) = 0,

sgn

(
sin

(
3

bn − 1

))
= sgn(sin(2πn+ π/2)) = 1,
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which yield two constant sequences with different limits. Therefore the limit does
not exist.

19 October 11

A continuous function has lots of nice properties. For example for a continuous
function defined over a closed and compact interval, the max and min are always
attained. Here is another one called intermediate value theorem which says that if
f : [a, b]→ R is continuous on the closed and bounded interval, then f attains every
value between maximum and minimum. In other words, the image f([a, b]) = [m,M ]
is also a closed bounded interval. It is easy to construct examples to see both
continuity on f and connectedness together with the compactness of the domain of
f cannot be dropped.

We say a function f has the intermediate value property (IVP) on an interval
I if for any a, b ∈ I with a < b and z ∈ R is any value between f(a) and f(b) then
there exists c ∈ [a, b] such that f(c) = z. Then every continuous function f : I → R
has IVP on I. But the converse is not true. Consider f(x) = sin(1/x) if x 6= 0 and
f(0) = 0 as an example.

Here are some applications of the intermediate value theorem:

Example 19.1. • Consider the polynomial function

f(x) = x7 + 4x5 + 3x4 − 6x2 + 3,

then such function has at least one real root. This is due to the fact that we
can write

f(x) = x7(1 + 4/x2 + 3/x3 − 6/x5 + 3/x7)

then
lim
x→∞

f(x) =∞, lim
x→−∞

f(x) = −∞.

It means that we can find some a, b ∈ R with a > 0 and b < 0 such that
f(a) > 0 and f(b) < 0. Now since f is continuous on [b, a] we can apply
intermediate value theorem on [b, a] to get the existence of c ∈ (b, a) such that
f(c) = 0 (because f(b) < 0 < f(a)).
• Consider another polynomial function

f(x) = −x4 + 2x3 + 2

then such function has at least two real roots.
One way to see this is by checking f(0) = 2 > 0, f(−1) = −1 < 0 and
f(3) = −81 + 54 + 2 < 0 and apply the intermediate value theorem on [−1, 0]
and [0, 3] to get two different real roots.
Or since f(0) = 2 > 0 and limx→∞ f(x) = −∞ with limx→−∞ f(x) = −∞, we
will get the same result by apply intermediate value theorem on two intervals.
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• Let f : [a, b] → R be a continuous function. Given c1, · · · , cn ∈ [a, b]. Then
there exists some c ∈ [a, b] such that

f(c) =
f(c1) + · · ·+ f(cn)

n
.

Let j be such that f(cj) is the maximum among all f(ci)’s; let k be such that
f(ck) is the minimum among all f(ci)’s. Then

f(ck) ≤ f(c1) + · · ·+ f(cn)

n
≤ f(cj).

And we can apply the intermediate value theorem on the interval with endpoints
cj and ck.

Let us move on to the uniform continuous functions. A function f : D → R is
said to be uniformly continuous on D if for any ε > 0 there exists δ > 0 such that
for any x, y ∈ D with |x− y| < δ we have |f(x)− f(y)| < ε.

Unlike the continuity of a function, for a uniformly continuous function, the
choice of δ does not rely on the point x ∈ D.

Remark 19.2. Given a function f : D → R:
• If f is uniformly continuous on D then it is continuous on D.
• We also have the sequential characterization of uniformly continuous functions.
f is uniformly continuous on D if and only if for any {xn}, {yn} ⊂ D with
limn→∞ |xn − yn| = 0 then limn→∞ |f(xn)− f(yn)| = 0.
f is not uniformly continuous on D if and only if there exists some ε0 > 0 and
{xn}, {yn} ⊂ D such that limn→∞ |xn − yn| = 0 but |f(xn)− f(yn)| > ε0 for
all n ∈ N.
• Uniformly continuous function sends a Cauchy sequence to a Cauchy sequence.

Some examples:

Example 19.3. • The function f(x) = x3 − x+ 2 is uniformly continuous on
(0, 1). By definition, for any ε > 0, take δ = ε/4. Then for any a, b ∈ (0, 1)
with |a− b| < δ:

|f(a)− f(b)| = |a3 − a+ 2− b3 + b− 2|
= |a3 − b3 − (a− b)|
= |a− b||a2 + ab+ b2 − 1|
≤ 4|a− b| < 4δ = ε.

• The function f(x) = sin(x2) is uniformly continuous on [a, b] but it is not
uniformly continuous on [a,∞).
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Let us first prove f is uniformly continuous on [a, b]. Take M = max{|a|, |b|}.
For any ε > 0, take δ = ε/2M . Then for any x, y ∈ [a, b] with |x− y| < δ, we
have

|f(x)− f(y)| = | sin(x2)− sin(y2)|

= 2

∣∣∣∣sin x2 + y2

2

∣∣∣∣ ∣∣∣∣sin x2 − y22

∣∣∣∣
≤ 2

∣∣∣∣sin x2 − y22

∣∣∣∣
≤ |x− y||x+ y| ≤ 2M |x− y| < ε.

But the function f is not uniformly continuous on [a,∞). Take

xn =
√
nπ, yn =

√
nπ + π/2.

Note that the sequences {xn}, {yn} are eventually in [a,∞). They also satisfy:

yn − xn =
π/2

√
nπ +

√
nπ + π/2

<
2

2
√
n

=
1√
n
→ 0

as n→∞. But
|f(xn)− f(yn)| = 1

implies that f is not uniformly continuous on [a,∞).
• The function f(x) =

√
x is also uniformly continuous on [0,∞]. This is due to

the fact that for any x, y ≥ 0:

|f(x)− f(y)| = |
√
x−√y| ≤

√
|x− y|.

• As a generalization of above example, we call a function f : D → R satisfying

|f(x)− f(y)| ≤ C|x− y|α

for all x, y ∈ D, Hölder continuous of order α where C is a nonnegative real
constant and α > 0. In particular, if α = 1 then we say the function satisfies
the Lipschitz condition. A function is Hölder continuous implies uniformly
continuous.

20 October 13

The continuous extension theorem allows one to define the value of the function at the
endpoints of the domain to extend continuous function to a (uniformly) continuous
function over the closed and bounded domain.
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Example 20.1. Consider the function

f(x) = xα sin

(
1

x

)
for some constant power α ∈ R on the open interval (0, 1).

If α > 0 then ∣∣∣∣xα sin

(
1

x

)∣∣∣∣ ≤ |x|α → 0

as x→ 0+. Thus f(x) is uniformly continuous on (0, 1) for all α > 0.
If α ≤ 0 then take a sequence

xn =
2

(2n+ 1)π
.

But f(xn) = (−1)nxαn does not converge as n → ∞. Thus the function is not
uniformly continuous on (0, 1) for α ≤ 0.

We also have the similar property for infinite domain:

Proposition 20.2. Suppose f : [0,∞)→ R is continuous and limx→∞ f(x) = L <
∞. Then f is uniformly continuous on [0,∞).

Proof. Since f(x) → L as x → ∞, for any ε > 0 there exists M > 0 such that for
any x ≥M we have

|f(x)− L| < ε/3.

Since f : [0,∞)→ R is continuous, f is UC on [0,M ]. Thus there exists δ > 0 such
that for any x, y ∈ [0,M ] with |x− y| < δ we have

|f(x)− f(y)| < ε/3.

Now let x, y ∈ [0,∞), and suppose |x− y| < δ:
• If x, y ∈ [0,M ], we are done.
• If x, y ∈ (M,∞), then

|f(x)− f(y)| ≤ |f(x)− L|+ |f(y)− L| < 2ε/3 < ε.

• If x ∈ [0,M ] and y ∈ (M,∞), then |x−M | ≤ |x− y| < δ, thus

|f(x)− f(y)| ≤ |f(x)− f(M)|+ |f(M)− L|+ |f(y)− L| < ε.

Therefore f is UC on [0,∞).

Example 20.3. By above proposition, the function f(x) = 1
1+x2 is UC on R.
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21 Quiz 6

1. Suppose f : D → R is a function defined on D ⊆ R.
(1) (2pts) State the definition of f being continuous at a ∈ D.

Proof. The function f is continuous at a ∈ D if for any ε > 0 there exists a
δ > 0 such that for any x ∈ D with |x−a| < δ, we have |f(x)−f(a)| < ε.

(2) (3pts) State the definition of f being uniformly continuous on D.

Proof. The function f is uniformly continuous on D if for any ε > 0 there
exists a δ > 0 such that for any x, y ∈ D with |x − y| < δ we have |f(x) −
f(y)| < ε.

2. Let f : [0, 2]→ R be defined as

f(x) =

{
x if 0 ≤ x < 1;

(2− x)(x5 + 1) if 1 ≤ x ≤ 2.

(1) (2pts) Is the function continuous on [0, 2]? Justify your answer.

Proof. No. The function is not continuous at x = 1 because

lim
x→1−

f(x) = 1 6= 2 = lim
x→1+

f(x).

(2) (3pts) Prove f attains every value between 0 and 2.

Proof. The function is clearly continuous on [1, 2] since it is a polynomial
function. Since f(1) = 2 and f(2) = 0, by applying the Intermediate Value
Theorem to f on [1, 2], the function must attain all values between 0 and
2.

22 October 18

A function that is differentiable at a point means that it can be locally approximated
by a linear function with the slope of tangent line given by the derivative. It is also
a local property meaning that the differentiablity and the value of the derivative
depend only on the values of function f in an arbitrary small neighborhood of such
point. Namely, we say the function f : (a, b)→ R is differentiable at c ∈ (a, b) with
derivative f ′(c) if the limit exists and is finite

lim
h→0

f(c+ h)− f(c)

h
= f ′(c).

And the domain of f ′ is the set of points c for which the above limit exists. This
definition is usually used when c is an interior point of the domain of the function so
that one can always find a δ-neighborhood of c entirely contained in the domain.
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There is also another nice and convenient way to characterize differentiability
called Carathéodory Lemma:

Lemma 22.1 (Carathéodory Lemma). Given a function f : D → R. The function
f is differentiable at an interior point a ∈ D if and only if there exists a increment
function D : D → R such that

f(x)− f(a) = D(x)(x− a)

for any x ∈ D and D is continuous at a. In this case we have D(a) = f ′(a).

One can check that if such D(x) exists it is uniquely determined by f and a.
Moreover the continuity of D at a implies the continuity of f at a.

Now let’s look at some examples.

Example 22.2. • Define f : R→ R by

f(x) =

{
x2 if x is rational;

−x2 if x is irrational.

It is easy to check that f is only continuous at x = 0. Thus f is not differentiable
at any a ∈ R with a 6= 0. Now we define

D(x) =

{
x if x is rational;

−x if x is irrational.

It is continuous at x = 0 and f(x) = xD(x) + f(0) holds for all x ∈ R. So by
the Carathéodory Lemma, f is differentiable at x = 0.
• Consider the function f : R→ R given by

f(x) = |x|1/2.

If a > 0, then

lim
h→0

f(a+ h)− f(a)

h
= lim
h→0

(a+ h)1/2 − a1/2

h

= lim
h→0

h

h[(a+ h)1/2 + a1/2]

= lim
h→0

1

(a+ h)1/2 + a1/2

=
1

2a1/2
.

For negative a < 0, the limit can be computed similarly with a negative sign.
But f is not differentiable at x = 0 this is due to the limit

lim
h→0+

f(h)− f(0)

h
= lim
h→0+

1

h1/2
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does not exist as a finite limit. Therefore f is differentiable at x 6= 0 with
derivative:

f ′(x) =
sgn(x)

2|x|1/2
.

• Now consider the function f : (0,∞)→ R given by

f(x) = xα

for some fixed power α ∈ R. Then for any x ∈ (0,∞),

lim
h→0

f(x+ h)− f(x)

h
= lim
h→0

(x+ h)α − xα

h

= lim
h→0

((
1 + h

x

)α − 1
h
x

)
(xα−1)

= αxα−1.

Therefore the function f is differentiable on (0,∞) with derivative f ′(x) =
αxα−1.
One could then ask for what values of α is the function f(x) = xα continuous
at 0.

The followings are some highly oscillating functions:

Example 22.3. • Define f : R→ R by

f(x) =

{
x sin(1/x) if x 6= 0;

0 if x = 0.

It is easy to see that f is differentiable at x 6= 0 with derivative (compute by
yourself). But since the limit

lim
h→0

f(h)− f(0)

h
= lim
h→0

h sin(1/h)

h
= lim
h→0

sin(1/h)

does not exist, the function f is not differentiable at x = 0.
• Define f : R→ R by

f(x) =

{
x2 sin(1/x) if x 6= 0;

0 if x = 0.

Again it is easy to check that the function f is differentiable at x 6= 0. Moreover

lim
h→0

f(h)− f(0)

h
= lim
h→0

h sin(1/h) = 0

thus the function is differentiable on R. Check yourself that f ′(x) is not
continuous at x = 0.
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23 October 20

The extreme value theorem for continuous functions tells us the existence of absolute
max/min on a closed and bounded domain but it doesn’t say how to find them. One
of an important applications of differentiability is to locate the max/min of functions.
I will skip the definitions of global/local extrema, check the lecture notes if needed.

Let us first recall some definitions. Given a function f : D → R:
• A point c ∈ D is called a critical point of f if c is an interior point of D such

that either f is not differentiable at c or f ′(c) = 0;
• A point c ∈ R is called a boundary point of D if there exist sequences {xn} ⊂ D

and {yn} ⊂ R \D both of limit c. Equivalently, c ∈ R is a boundary point of
D if and only if for any δ > 0 the neighborhood (c− δ, c+ δ) contains a point
of D as well as a point not in D.

Theorem 23.1 (Fermat). If f : D → R has a local extremum at an interior point
c ∈ D and f is differentiable at c, then f ′(c) = 0.

In particular, if the domain D ⊂ R is closed and bounded and f : D → R is
continuous, then absolute max and min exist. And the absolute max and min are
attained at either a critical point of f or a boundary point of D.

Remark 23.2. In Fermat’s theorem, the condition on c as an interior point is crucial
since we need to compare the signs of left/right difference quotients at c. But at
an endpoint of an interval domain, we can also get similar results. For instance, let
f : [a, b]→ R.
• Suppose the left derivative of f exists at b. If f has a local max at b then
f ′(b−) ≥ 0;
• Suppose the right derivative of f exists at a. If f has a local max at a then
f ′(a+) ≤ 0.

Complete the statement for local min yourself. It is easier to see by drawing graphs.

Let’s look at some examples. Note that there is no standard way to search local
max and min.

Example 23.3. • Consider the floor function f(x) = bxc for x ∈ R.
Then every integer is a local max. Every element in R \ Z is both a local min
and max. There is no global max or min for f on R.
• (A critical point may not be local extrema) Consider f : [−1, 1]→ R:

f(x) =

{
x if x ∈ [−1, 0];

2x if x ∈ (0, 1].

Then f is not differentiable at only x = 0 and x = 0 is the unique critical point
of f on [−1, 1]. But f does not attain local extrema at x = 0. Indeed, the
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absolute max and min of f attains at two endpoints. And f has no other local
extrema. (There are also examples such as f(x) = x3 which has been discussed
in lectures.)
• Now consider f(x) = x4 − 2x2 − 1 on [−2, 2]. Then the origin x = 0 is a local

max. This is simply because f(0) = −1 and

f(0)− f(x) = 2x2 − x4 = x2(2− x2) ≥ 0

holds on [−1, 1]. But it is not global because f(2) = 16−8−1 = 7 > f(0) = −1.
• Consider the function

f(x) = x+
1

1 + x
on (−1,∞). Then x = 0 is a local min and also a global min. This is because

f(x)− f(0) = x+
1

1 + x
− 1 =

x2

1 + x
≥ 0

on (−1,∞).

24 Quiz 7

1. (5 pts) State the definition of a function f : (a, b) → R being differentiable at
c ∈ (a, b).

Proof. We say the function f : (a, b)→ R is differentiable at c ∈ (a, b) if the limit

lim
h→0

f(c+ h)− f(c)

h

exists and is finite. We then denote the limit by f ′(c) which is called the derivative
of f at c.

2. (5 pts) Let f : (0,∞)→ R be a function defined by

f(x) =


1

x
if x ∈ (0, 1);

−x+ 3 if x ∈ [1,∞).

(1) (3 pts) Use the definition to prove the function f is differentiable on the
interval (0, 1).

Proof. For any x ∈ (0, 1), since the limit

lim
h→0

f(x+ h)− f(x)

h
= lim
h→0

1
x+h −

1
x

h

= lim
h→0

−1

x(x+ h)

= − 1

x2
.
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the function is differentiable on (0, 1) with derivative given by f ′(x) =
−1/x2.

(2) (2 pts) Is the function differentiable on (0,∞)? Justify your answer.

Proof. No. The function f is not continuous at x = 1 due to

lim
x→1−

f(x) = lim
x→1−

1

x
= 1 6= 2 = lim

x→1+
f(x) = lim

x→1+
(−x+ 3).

25 October 25

The Mean Value Theorem tells us that for a function f : [a, b]→ R which is continuous
on [a, b] and differentiable on (a, b), then there exists a point c ∈ (a, b) at which
the tangent line is parallel to the line joining two endpoints (a, f(a)) and (b, f(b)).
Rolle’s Theorem is the special case of MVT when the line joining two endpoints is
horizontal. The Mean Value Theorem is incredibly useful which can be used to prove
Fundamental Theorem of Calculus, L’Hopital’s Rule and etc. Geometrically, we can
interpret MVT as follows:

Mean Value Theorem has a lot of applications. We have seen one in class that
suppose f : [a, b)→ R is continuous on [a, b) and differentiable on the open (a, b), if
the one-sided limit limx→a+ f

′(x) of derivative exists (finite/infinite), then the sided
derivative also exists with the same value, i.e.

f ′+(a) = lim
x→a+

f(x)− f(a)

x− a
= lim
x→a+

f ′(x).

We use that to define a plane curve (as graph of some function) has left/right vertical
tangent line at certain point. Here are some examples of curves with a cusp:

Example 25.1. • Consider the function f(x) = x2/3 on R and the origin x = 0.
We know this function is continuous on R. Moreover,

lim
x→0+

f(x)− f(0)

x
= lim
x→0+

1
3
√
x

=∞,
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while

lim
x→0−

f(x)− f(0)

x
= lim
x→0−

1
3
√
x

= −∞.

Thus f is not differentiable at x = 0 and it has a cusp at x = 0.
• Other example you may want to check yourself is f(x) =

√
|x| at x = 0.

The MVT can also be used to prove a general version. With two functions
f, g : [a, b] → R being continuous on [a, b] and differentiable on (a, b) we also have
the generalized MVT, with geometric interpretation as follow:

Other applications are
(0) (Uniqueness of roots) Consider f(x) = x4 + 2x3 − 2 for x ∈ R. Since f ′(x) =

4x3 + 6x2 > 0 for all x ∈ (0,∞) by Rolle’s Theorem the function f has at most
one root in [0,∞). On the other hand, f(0) = −2 and f(1) = 1 by IVT, f has
at least one root in [0, 1]. Therefore f has a unique root in [0,∞).

(1) (Estimate values) For instance we want to estimate
√

2. Consider f(x) =
√
x

and apply MVT to f(x) on [1, 2]. Then there exists c ∈ (1, 2) such that

f ′(c) =
1

2
√
c

=

√
2− 1

1
.

Since c ∈ (1, 2) we have

1

2
√

2
≤ f ′(c) =

√
2− 1 <

1

2
.

Thus we obtain

1 +
1

2
√

2
<
√

2 <
3

2
.

Use the second inequality we have 1√
2
> 2

3 , thus 4
3 <
√

2 < 3
2 .

For some similar exercises, one can try proving using MVT:

17

9
<

3
√

7 <
23

12
,

1

9
<
√

66− 8 <
1

8
.
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(2) (Prove inequalities)
(i) Show −a ≤ sin(a) ≤ a for all a ≥ 0.

If a = 0 we have sin(0) = 0. If a > 0, consider f(x) = sin(x). Then f is
clearly continuous on [0, a] and differentiable on (0, a). Apply MVT on
[0, a], there exists c ∈ (0, a) such that f(a)− f(0) = cos(c)a which implies
that −a ≤ f(a) = sin(a) ≤ a since cos(c) ∈ [−1, 1].

(ii) (Bernoulli) Show if α > 1, then (1 + x)α ≥ 1 + αx for all x > −1.
Let f(x) = (1 + x)α then f ′(x) = α(1 + x)α−1 for all x > −1. Consider
two cases when x > 0 and −1 < x < 0 (it is trivial when x = 0). If x > 0
apply MVT to f(x) on the closed interval [0, x]. Then there exists some
c ∈ (0, x) such that

f(x)− f(0) = f ′(c)x =⇒ (1 + x)α − 1 = α(1 + c)α−1x.

Since c > 0 we have (1 + c)α−1 > 1. Thus

(1 + x)α − 1 > αx.

If −1 < x < 0 then apply MVT to f on [x, 0], we will get the same result.
(3) (Prove uniform continuity) Consider the function f(x) = log x we want to show

that it is uniformly continuous on (1,∞).
For any x, y ∈ (1,∞) assume x < y. Apply MVT to f(x) on [x, y]. Then there
exists c ∈ (x, y) such that

f(y)− f(x) = f ′(c)(y − x) =⇒ log(y)− log(x) =
1

c
(y − x).

Taking absolute value, we get

|f(x)− f(y)| = 1

c
|x− y| < |x− y|

since c > 1. Therefore f is Lipschitz on (1,∞) thus it is uniformly continuous
on (1,∞).

26 October 27

Here is a sufficient condition for a local extremum.

Proposition 26.1. Let D ⊆ R and c is an interior point of D, and f : D → R.
Assume f is continuous at c.
• (First derivative test for local minimum) f is differentiable on (c−δ, c)∪(c, c+δ)

for some δ > 0. And f ′(x) ≤ 0 for all x ∈ (c − δ, c) while f ′(x) ≥ 0 for all
x ∈ (c, c+ δ). Then f has a local minimum at c.
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• (First derivative test for local maximum) f is differentiable on (c−δ, c)∪(c, c+δ)
for some δ > 0. And f ′(x) ≥ 0 for all x ∈ (c − δ, c) while f ′(x) ≤ 0 for all
x ∈ (c, c+ δ). Then f has a local maximum at c.

Proof. For the first case we know that f is decreasing on (c− δ, c) and increasing
on (c, c + δ). Moreover since f is continuous at c by taking the limits as x → c−

and x → c+ we see that f(x) ≥ f(c) for all x ∈ (c − δ, c + δ). Thus f has a local
minimum at c. The proof for the local maximum follows similarly.

Example 26.2. Consider f : (−1, 1)→ R defined by

f(x) =

{
x2 if 0 < |x| < 1,

−1 if x = 0.

It is clear that f has a (strict) local minimum at x = 0. But f is not continuous at
0 so the conditions in the first derivative test are not satisfied. Also we can assign
f(0) = 1. Then f is differentiable on (−1, 0) ∪ (0, 1) and f ′(x) ≤ 0 on (−1, 0) and
f ′(x) ≥ 0 on (0, 1). But f doesn’t have a local minimum at 0.

Note that f is not required to be differentiable at point c. Here is an example:

Example 26.3. Consider the function f : R→ R defined by

f(x) =

{
ex + x− 1 if x > 0;

−3x3 − x if x ≤ 0.

Then it can be easily checked that f is continuous everywhere on R. And f ′−(0) =
−1 6= 2 = f ′+(0) so f is not differentiable at x = 0. But f still has a local minimum
at x = 0.

Also, it is possible to have a function which is differentiable on R and has absolute
minimum at x = 0. But its derivative is not ≥ 0 in any interval (0, δ).

Example 26.4. Consider function f : R→ R given by

f(x) =

2x2 + x2 sin
1

x
if x 6= 0,

0 if x = 0.

It is easy to see that f(x) > 0 = f(0) for any x 6= 0. Thus f has an absolute
minimum at x = 0. And it can also be check easily that f is differentiable at x = 0.
To see f ′ is not ≥ 0 in any interval (0, δ), we consider the derivative

f ′(x) =

4x+ 2x sin
1

x
− cos

1

x
if x 6= 0,

f ′(0) = 0 if x = 0.
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Since

f ′
(

1

2nπ

)
=

2

nπ
+ 0− 1 < 0, for all n ∈ N

and

f ′
(

1

2nπ + π/2

)
=

4

2nπ + π/2
+

2

2πn+ π/2
> 0, for all n ∈ N,

for any δ > 0, there exists n ∈ N such that

1

2nπ + π/2
<

1

2nπ
< δ.

Thus in any interval (0, δ), f ′ can take both positive and negative values.

Similarly one can consider function

f(x) =

x+ 2x2 sin
1

x
if x 6= 0,

0 if x = 0.

And show that f is differentiable on R and in every neighborhood of 0, the derivative
f ′ takes both positive and negative values.

27 Quiz 8

1. (4 pts) State the Mean Value Theorem.

Proof. Suppose a function f : [a, b]→ R is continuous on [a, b] and differentiable in
(a, b) then there exists a point c ∈ (a, b) such that f(b)− f(a) = f ′(c)(b− a).

2. (3 pts) Prove the following inequality using Mean Value theorem

ex > 1 + x, for all x > 0.

(Hint: Consider for example, the function f(x) = ex − x− 1.)

Proof. Define f(x) = ex − x− 1 which is clearly continuous and differentiable on
R. Fix any a > 0, apply the Mean Value Theorem to f on the interval [0, a]. Then
there exists some c ∈ (0, a) such that f(a)− f(0) = f ′(c)a. Since f ′(x) = ex − 1
we can rewrite the equation as

ea − a− 1 = (ec − 1)a > 0

since ec − 1 > e0 − 1 = 0 for c > 0. Therefore ea − a− 1 > 0 for any a > 0 which
shows ex > 1 + x for all x > 0.

45



3. (3 pts) Is it possible that a function f is continuous on [1, 3], differentiable in (1, 3),
f(1) = 4, f(3) = 0 and |f ′(x)| < 2 for every x ∈ (1, 3)? Justify your answer.

Proof. No. Since f is continuous on [1, 3] and differentiable in (1, 3) by Mean
Value Theorem, there exists a point c ∈ (1, 3) such that

f ′(c) =
f(3)− f(1)

2
=
−4

2
= −2.

Thus there is a c ∈ (1, 3) with |f ′(c)| = 2.

28 November 1

For today’s recitation we are going to continue on L’Hopital’s Rule and take a look
at a “discrete” analogue of L’Hopital’s rule on sequences which might be used as an
alternatively way to show the L’Hopital’s for ∞/∞ type of limits sequentially, and
turns out to be useful in finite difference equations with a byproduct of computing
the limits of some types of series.

Before getting to the Toepliz-Stolz-Cesàro Theorem, let’s first have a quick review
on when the L’Hopital’s rule can be applied. In order to apply the L’Hopital’s rule
to compute

lim
x→a+

f(x)

g(x)

for limx→a+ f(x) = limx→a+ g(x) = 0 (for instance). One needs to check that
• f and g are differentiable on some (a, b) with g′(x) 6= 0 on (a, b) – g′(x) did

not change sign infinitely often in a (right) neighborhood of a;

• limx→a+
f ′(x)
g′(x) = L exists finitely or infinitely.

Then we can conclude that the target limit exists and equals to L.
Let’s consider several (non)examples regarding the L’Hopital’s Rule:

Example 28.1. (1) Compute

lim
x→∞

ex − e−x

ex + e−x
.

This limit can be easily computed using some basic algebra. But if we apply
L’Hopital blindly we make ourselves in the infinite loop. L’Hopital’s Rule is
of course a incredibly useful technique but do not forget other methods of
computing limits.

(2) Consider a modification of an example from class:

lim
x→∞

x− sinx

x+ sinx
= 1.
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We have both f(x) = x− sinx and g(x) = x+ sinx are differentiable on R and
limx→∞ f(x) = limx→∞ g(x) =∞. But L’Hopital cannot be applied because

g′(x) = 1 + cosx

and g′(x) = 0 for x = 2nπ + π for any n ∈ Z. It means that g′(x) has zeros in
every interval (M,∞). Therefore the L’Hopital’s rule cannot be applied here.

(3) Let’s first briefly define the second derivative here. Let f : D → R and suppose
f is differentiable on the subset E ⊆ D. Let c ∈ E be a cluster point of E. If
f ′ : E → R is differentiable at c then we denote f ′′(c) = (f ′)′(c) and call it the
second derivative of f at c.
Now consider a function f(x) which is defined in a neighborhood of c. And
suppose f ′′(c) exists. Then

lim
h→0

f(c+ h) + f(c− h)− 2f(c)

h2
= f ′′(c).

But even if the above limit exists f ′′(c) does not necessarily exist.
Since f ′′(c) exists, by definition we have

f ′′(x) = lim
h→0

f ′(c+ h)− f ′(c)
h

= lim
h→0

f ′(c)− f ′(c− h)

h
.

Then

f ′′(x) =
1

2
lim
h→0

f ′(c+ h)− f ′(c)
h

+
1

2
lim
h→0

f ′(c)− f ′(c− h)

h

= lim
h→0

f ′(c+ h)− f ′(c− h)

2h

On the other hand, applying L’Hopital and chain rule we have

lim
h→0

f(c+ h) + f(c− h)− 2f(c)

h2
= lim
h→0

f ′(c+ h)− f ′(c− h)

2h
.

Thus

f ′′(c) = lim
h→0

f(c+ h) + f(c− h)− 2f(c)

h2
.

For the counterexample, we want to construct a function f with f ′(x) = |x|,
thus f ′′ does not exist at x = 0. So we consider f(x) =

∫ x
0
|t|dt = x|x| with

c = 0. Then again by L’Hopital, the limit is 0 but the f ′′(0) does not exist.

Now let’s move to the Toeplitz-Stolz-Cesàro. Let me first state the Toeplitz
Theorem without proof:
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Theorem 28.2 (Toeplitz). Let {cn,k | 1 ≤ k ≤ n, n ∈ N} be a double-indexed set of
points in R, i.e.

c1,1
c2,1 c2,2

...
...

cn,1 cn,2 · · · cn,n
...

...
...

...

such that
• each vertical sequence converges to zero, i.e. for each fixed k ≥ 1, the sequence
cn,k → 0 as n→∞;
• the sequence formed by horizontal sums

∑n
k=1 cn,k → 1 as n→∞;

• there exists a positive constant C > 0 such that
∑n
k=1 |cn,k| ≤ C for each

n ∈ N.
Then for any convergent sequence {an} the sequence {bn} given by

bn =

n∑
k=1

cn,kak

is also convergent with limn→∞ bn = limn→∞ an.

Note that the proof of the Toeplitz Theorem is not hard one can first reduce to
assuming the sequence {an} has limit zero (why?).

The Toeplitz Theorem produces fruitful results. I will only name a few here:
(a) Take a special array by setting cn,k = 1

n for all 1 ≤ k ≤ n. Namely the nth row
of the above table will be ( 1

n , · · · ,
1
n ) and the columns are some truncations

of the sequence { 1n}. It can be easily checked that such {cn,k} satisfies the
conditions in the Toeplitz Theorem. Thus we get the following proposition:

Proposition 28.3. Suppose {an} → L converges and {bn} is defined by

bn =
a1 + · · ·+ an

n
.

Then {bn} → L as n→∞.

Given a sequence {an} and define {bn} as above, i.e. taking the arithmetic
means of {an}, We say {an} is Cesàro convergent if {bn} is convergent. By
the above proposition, we know if {an} is convergent then it must be Cesàro
convergent. But the converse may not be true, for example take an = (−1)n

(check).
We can use the above result to compute the limit of some series, for example{

bn =
1

n

(
1 +

1

2
+ · · ·+ 1

n

)}
.

Since we know that an = 1
n → 0 then bn → 0 as well by the proposition.
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(b) The Toeplitz Theorem also implies the Stolz Theorem:

Theorem 28.4 (Stolz). Let {an}, {bn} be two sequences such that
i) {bn} strictly increasing to ∞.

ii) lim
n→∞

an − an−1
bn − bn−1

= L.

Then lim
n→∞

an
bn

= L.

The above Stolz Theorem might be used to give a sequential proof of L’Hopital’s
Rule for ∞/∞ type of limits. Moreover it can also be used to compute the
limit of some sequences:

1) Consider

lim
n→∞

1√
n

(
1 +

1√
2

+ · · ·+ 1√
n

)
.

Take an =
∑n
k=1

1√
k

and bn =
√
n which is strictly increasing to infinity.

Since

lim
n→∞

an − an−1
bn − bn−1

= 2,

by Stolz Theorem, the target limit is also 2.
2) (Exercise) Find the limit

lim
n→∞

1k + 2k + · · ·+ nk

nk+1
, k ∈ N.

using the Stolz Theorem.

29 November 3

We have already seen the definition of higher order derivatives in yesterday’s lecture.
Roughly speaking, given a function, in order to define the nth order derivative we
just consider the (n− 1)th derivative on the subset where it is differentiable at. As
mentioned in class, the domains may not always behave nicely, i.e. such as intervals
or union of intervals, it might be some set consisting of sequences as well.

Let’s consider an example:

Example 29.1. Let f : [0, 1)→ R be a function defined by

f(x) =

x2 sin
1

x
if x ∈ (0, 1) ∩Q;

x2 if x ∈ (0, 1) ∩Qc or x = 0.

In order to find the set on which the function is differentiable, call it D1 ⊆ [0, 1),
first notice that it has to be continuous on such set. Thus

D1 ⊆
{

1

2πn+ π/2

∣∣∣∣n ∈ N
}
∪ {0}
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since the function is continuous only at zero and the point x ∈ (0, 1) with sin(1/x) = 1.
This can be argued as following. Take any sequence {ak} → xn, then {ak} can be
divided into three cases: contains infinitely many rationals and irrationals; only
infinitely rationals; only infinitely many irrationals. No matter what situation,
together with

lim
x→xn

x2 sin
1

x
= x2n = lim

x→xn

x2

we obtain the continuity of f at xn.
One can also check that the function f is also differentiable at these xn’s together

with the origin. At x = xn, consider

lim
h→0

f(xn + h)− f(xn)

h
= 2xn

which can be argued similarly as above. At the origin x = 0, we simply have

∣∣∣∣f(h)

h
− 0

∣∣∣∣ =


∣∣∣∣h2 sin 1

h

h

∣∣∣∣ if h ∈ Q;

|h| if h /∈ Q.

in any event, the above value ≤ |h| which has limit 0 as h → 0+. Therefore f is
right-differentiable at 0 with f ′+(0) = 0 and differentiable at xn’s with f ′(xn) = 2xn.
Thus

D1 =

{
1

2πn+ π/2

∣∣∣∣n ∈ N
}
∪ {0}

is the domain for the first order derivative f ′. The only accumulation point in D1 is
0. One can also check if f ′ is right-differentiable at 0. Since

lim
n→∞

f ′(xn)− f ′(0)

xn − 0
= lim
n→∞

2xn
xn

= 2,

it means that the function f has second (right) derivative at 0 with value f ′′(0) = 2.

Besides the above extreme example, let us consider the following:

Example 29.2. Consider the function f : R→ R given by

f(x) =

{
e−

1
x2 if x 6= 0;

0 if x = 0.

It is clear that the function f is differentiable away from x = 0. At x = 0, we have

lim
h→0

f(h)− f(0)

h
= lim
h→0

e−
1
h2

h
= lim
h→0

1/h

e
1
h2

= lim
h→0

h

2e
1
h2

= 0
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by L’Hopital’s Rule. Thus

f ′(x) =


2

x3
e−

1
x2 if x 6= 0;

0 if x = 0.

It can be checked similarly that f ′ is continuous on R. Moreover, we have

f ′′(x) =

e−
1
x2

(
4

x6
− 6

x4

)
if x 6= 0;

0 if x = 0.

Because using L’Hopital we have

lim
h→0

f ′(h)− f ′(0)

h
= lim
h→0

2e−
1
h2

h4
= 0.

Consequently, we get for any n ∈ N

f (n)(x) =

{
e−

1
x2 P (1/x) if x 6= 0;

0 if x = 0,

where P (x) is a polynomial in R[x]. Therefore f ∈ C∞(R). The nth Taylor’s
polynomial of f at zero can be written as

Tn(x; 0; f) =

n∑
k=0

f (k)(0)

k!
xk = 0.

30 Quiz 9

1. (4 pts) State the characterization of local minimum using first derivatives.

Proof. Let D ⊆ R and c be an interior point of D. Suppose f : D → R is
continuous at c. If f is differentiable on (c− δ, c) ∪ (c, c+ δ) for some δ > 0 and
f ′(x) ≤ 0 for all x ∈ (c− δ, c) while f ′(x) ≥ 0 for all x ∈ (c, c+ δ), then f has a
local minimum at c.

2. (6 pts) Consider the function f : (0,∞)→ R given by

f(x) =


1

x
if 0 < x < 1;

0 if x = 1;

x2 − 2 lnx if x > 1.
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(a) (2 pts) Find an interval on which the function f is decreasing. Justify your
answer.

Proof. On (0, 1) it is easy to see that f ′(x) = −x−2 < 0. Thus f is decreasing
on (0, 1).

(b) (2 pts) Find an interval on which the function f is increasing. Justify your
answer.

Proof. On (1,∞) we have f ′(x) = 2x− 2
x = 2x2−2

x = 2(x−1)(x+1)
x > 0. Thus

the function f is increasing in any interval contained in (1,∞).

(c) (2 pts) Does the function f attain its local minimum at x = 1? Justify your
answer.

Proof. We know from part (a) and (b) that the function f is decreasing in
(0, 1) and increasing in (1,∞). Moreover

lim
x→1+

f(x) = 1 = lim
x→1−

f(x) > f(1) = 0.

Therefore for any x ∈ (0,∞) \ {1} we have f(x) ≥ 1 > f(1) = 0 which means
that the function has an absolute min at x = 1.

31 November 15 & 17

Before doing examples regarding Taylor’s formula, let’s first finish up several examples
about application of the Mean Value Theorem:

Example 31.1. (1) Give an example of a differentiable function f for which
limx→∞ f(x) exists but limx→∞ f ′(x) does not exist.
Consider for example

f(x) =
1

x
sin(x2).

It is easy to see that limx→∞ f(x) = 0 but since

f ′(x) = 2 cosx2 − sinx2

x2

the limit limx→∞ f ′(x) does not exist.
(2) Show that if limx→∞ f(x) <∞ and limx→∞ f ′(x) exists then limx→∞ f ′(x) =

0.
Let L = limx→∞ f ′(x). Assume |L| > 0. Then there exists some M > 0 such
that whenever x ≥ M we have |f ′(x) − L| < |L|/2. Thus we have for all
x ≥M , |f ′(x)| > |L|/2. But then for any x > M apply Mean Value Theorem
on [x, x+ 1] there exists c ∈ (x, x+ 1) such that

|f(x+ 1)− f(x)| = |f ′(c)| > |L|/2
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which violates limx→∞ f(x) exists and is finite.

Let us then move on to the Taylor’s formula. Recall the Taylor formula (with
remainder in Lagrange form) says: If n ∈ N and f (k)’s exist for all n = 1, · · · , n and
are continuous on some [a, b]. In other words, f is of class Cn([a, b]). Assume f (n+1)

exists on (a, b). If x0 ∈ [a, b] then for any x ∈ [a, b] there exists some c between x
and x0 such that

f(x) = f(x0) + f ′(x0)(x− x0) + · · ·+ f (n)(x0)

n!
(x− x0)n +

f (n+1)(c)

(n+ 1)!
(x− x0)n+1.

The sum of first n+ 1 terms is called the nth Taylor’s polynomial of f at x0, denoted
by Tn(x;x0; f); the last term is called the nth Taylor’s remainder in Lagrange form,
denoted by Rn(x;x0; f).

There are tons of applications regarding to Taylor’s formula, let’s take a look at
some of them.

Example 31.2. Use Taylor’s formula to do estimation.
(1) We have seen example estimating

√
2 using Mean Value Theorem. The result

gives
4

3
<
√

2 <
3

2
.

We could get a better estimation of
√

2 by using Taylor’s formula. Again let
f(x) =

√
x and we will only use the first Taylor polynomial to see if we could

get better bounds. Use Taylor’s formula with n = 1, for any x > 1 we get

f(x) = f(1) + f ′(1)(x− 1) +
f ′′(c)

2
(x− 1)2

for some c ∈ (1, x). We know f ′(x) = 1
2
√
x

and f ′′(x) = − 1

4
√
x3

, then take

x = 2 we have √
2 = 1 +

1

2
− 1

8
√
c3
.

Since c ∈ (1, 2) we have 1√
c3
< 1 so

√
2 = 1 +

1

2
− 1

8
√
c3
> 1 +

1

2
− 1

8
=

11

8
>

4

3
.

Moreover we also have 1√
c3
> 1√

23
= 1

2
√
2

so

√
2 = 1 +

1

2
− 1

8
√
c3
< 1 +

1

2
− 1

16
√

2
<

35

24
<

3

2
.

Therefore we get a slightly better estimation for
√

2:

11

8
<
√

2 <
35

24
.
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(2) Using the similar idea by considering f(x) = ln(1 + x) and expanding with
some truncated Taylor’s polynomial together with the remainder, one can also
estimate ln(2) up to any accuracy. Claim that for 0 ≤ x ≤ 1 (it is true for
−1 < x ≤ 1 but the estimation for the remainder for −1 < x < 0 requires
using either integral form of Cauchy form):

f(x) = ln(1 + x) =

∞∑
n=1

(−1)n+1x
n

n
.

Since f (n+1)(x) = (−1)n+2n!(1 + x)−(n+1) we can write the nth remainder as

|Rn(x; 0; f)| = |x|n+1

|(n+ 1)(1 + c)n+1|

for some c ∈ (0, x). Since 0 ≤ x ≤ 1 we can estimate

|Rn(x; 0; f)| ≤ 1

(n+ 1)
→ 0

as n→∞. Therefore f(x) = ln(1 + x) can be written in an infinite sum when
x ∈ [0, 1]. In particular we have

ln(2) =

∞∑
n=1

(−1)n+1 1

n
.

If we use degree 3 Taylor’s polynomial we get

f(1) = ln 2 = 1− 1

2
+

1

3
− 1

4(1 + c)4

for some c ∈ (0, 1). Thus we get ln 2 can be approximated by 1− 1
2 + 1

3 = 5
6

with error ∣∣∣∣ 1

4(1 + c)4

∣∣∣∣ < 1

4
.

In general we could get an inequality for x > 0:

ln(1 + x) < x− x2

2
+
x3

3
− · · ·+ x2n−1

2n− 1
,

ln(1 + x) > x− x2

2
+
x3

3
− · · ·+ x2n−1

2n− 1
− x2n

2n
.

(3) Use the above inequality on ln(1+x) we can compute for example the following
limit:

lim
n→∞

(
1 +

1

n2

)(
1 +

2

n2

)
· · ·
(

1 +
n

n2

)
.
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Let us first transform from product to sum by taking log. Denote

an :=

(
1 +

1

n2

)(
1 +

2

n2

)
· · ·
(

1 +
n

n2

)
,

and then

ln an =

n∑
k=1

ln

(
1 +

k

n2

)
.

By the inequality we have above

k

n2
− k2

2n4
< ln

(
1 +

k

n2

)
<

k

n2
.

Taking summation from 1 to n:

1

n2

n∑
k=1

k − 1

2n4

n∑
k=1

k2 < ln an <
1

n2

n∑
k=1

k

which can be further simplified as

n(n+ 1)

2n2
− n(n+ 1)(2n+ 1)

6 · 2n4
< ln an <

n(n+ 1)

2n2
.

By squeeze theorem we have

lim
n→∞

an = lim
n→∞

eln an = e1/2.

Example 31.3. Other than estimation of some exact number, it can be also used
to find bounds in an abstract way.

(1) Given a function f . Suppose f ′, f ′′ both exist on [0, 1]. If |f(0)| ≤ 1, |f(1)| ≤ 1
and moreover |f ′′(x)| ≤ 2 for any x ∈ [0, 1]. Then what can we say about
|f ′(x)| on (0, 1)?
Fix any x ∈ (0, 1) by Taylor’s formula at x we have

f(1) = f(x) + f ′(x)(1− x) +
f ′′(c)

2
(1− x)2

for some c ∈ (x, 1) and

f(0) = f(x) + f ′(x)(0− x) +
f ′′(d)

2
(0− x)2

for some d ∈ (0, x). Therefore we get

f(1)− f(0) = f ′(x) +
f ′′(c)

2
(1− x)2 − f ′′(d)

2
x2
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which implies

|f ′(x)| =
∣∣∣∣f(1)− f(0)− f ′′(c)

2
(1− x)2 +

f ′′(d)

2
x2
∣∣∣∣

≤ |f(1)|+ |f(0)|+ 1

2
|f ′′(c)|(1− x)2 +

1

2
|f ′′(d)|x2

≤ 2 + (1− x)2 + x2 ≤ 2 + 1 = 3.

So we get |f ′(x)| is bounded from above by 3 on (0, 1).
(2) Given a function f . Suppose f ′, f ′′, f ′′′ all exist on R. Moreover assume

f(x), f ′′′(x) are bounded on R. Then is f ′(x) bounded on R? How about
f ′′(x)?
Fix any x ∈ R. By Taylor’s formula of f at x we can write

f(x+ 1) = f(x) + f ′(x) +
f ′′(x)

2
+
f ′′′(c)

3!

for some c ∈ (x, x+ 1) and similarly,

f(x− 1) = f(x) + f ′(x)(−1) +
f ′′(x)

2
(−1)2 +

f ′′′(d)

3!
(−1)3

for some d ∈ (x− 1, x). Thus

f(x+ 1)− f(x− 1) = 2f ′(x) +
1

6
[f ′′′(c) + f ′′′(d)].

Therefore, we obtain an expression of |f ′(x)| as

|f ′(x)| = 1

2

∣∣∣∣f(x+ 1)− f(x− 1)− 1

6
[f ′′′(c) + f ′′′(d)]

∣∣∣∣
≤ 1

2

(
|f(x+ 1)|+ |f(x− 1)|+ 1

6
|f ′′′(c)|+ 1

6
|f ′′′(d)|

)
≤M0 +

1

6
M3

where M0 and M3 are bounds for |f(x)| and |f ′′′(x)| on R respectively. There-
fore we have showed that f ′ is also bounded on R.
For f ′′(x) on R, summing f(x+ 1) and f(x− 1) up yields,

f(x+ 1) + f(x− 1) = 2f(x) + f ′′(x) +
1

6
[f ′′′(c)− f ′′′(d)].

Likewise we have an expression for |f ′′(x)| now:

|f ′′(x)| =
∣∣∣∣f(x+ 1) + f(x− 1)− 2f(x)− 1

6
[f ′′′(c)− f ′′′(d)]

∣∣∣∣
≤ 4M0 +

1

3
M3,

which means that f ′′(x) is also bounded on R.
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(3) (Exercise) Suppose the function f(x) is second differentiable on R. Let

Mk := sup
x∈R
|f (k)(x)|, k = 0, 1, 2.

If Mk <∞ for k = 0, 2, prove M2
1 ≤ 2M0M2 and thus M1 <∞.

We have seen how Riemann integration is defined for a bounded function f :
[a, b]→ R. Here is one (non)example for Riemann integrability:

Example 31.4. Consider the function f : [−2, 3]→ R given by

f(x) =

{
2|x|+ 1 if x ∈ Q;

0 if x ∈ Qc.

It is easy to show f(x) is nowhere continuous by sequential argument. Moreover we
know that f(x) ≥ 1 for all x ∈ Q. Therefore for any partition P of [−2, 3] we can
compute

L(f, P ) =

n∑
i=1

mi(f)(xi − xi−1) = 0

U(f, P ) =

n∑
i=1

Mi(f)(xi − xi−1) ≥
n∑
i=1

(xi − xi−1) = 3− (−2) = 5

by the density of Q and Qc in R. Thus the function is not Riemann integrable on
[−2, 3] since we can choose ε0 = 1 then for any partition P of [−2, 3] we always have
U(f, P )− L(f, P ) ≥ 5 > 1 = ε0.

32 Quiz 10

1. (5 pts) Write down the 3rd order Taylor’s formula, i.e. n = 3, centered at a ∈ R
with Lagrange remainder explicitly, for a function f ∈ C3([a, b]) and 4 times
differentiable in (a, b).

Proof. For any x ∈ [a, b] we have

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 +

f (4)(c)

4!
(x− a)4

for some c between a and x.

2. (5 pts) Let f(x) = x3 + x + 1. Apply the above result to rewrite f(x) as
f(x) = a0 + a1(x − 1) + a2(x − 1)2 + a3(x − 1)3. In other words, express the
function f(x) in terms of powers of (x− 1).
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Proof. Since f is a polynomial function of degree 3 therefore f (n) = 0 for all n > 3.
Moreover f ′(x) = 3x2 + 1, f ′′(x) = 6x and f ′′′(x) = 6 and thus f(1) = 3, f ′(1) =
4, f ′′(1) = 6 and f ′′′(1) = 6. Use the Taylor’s formula centered at a = 1 we get

f(x) = 3 + 4(x− 1) + 3(x− 1)2 + (x− 1)3.

33 November 29

We have showed that
• A continuous function on [a, b] is Riemann integrable.
• A monotonic function on [a, b] is Riemann integrable.
• A bounded function with a single discontinuity is Riemann integrable since

we can make the partitioned interval containing the discontinuity arbitrarily
small.
• The proof of above can be easily generalized to show a bounded function with

finitely many discontinuities is also Riemann integrable.
• For countably many discontinuities, the proof above cannot be applied, in this

case one might need to use the compactness of [a, b] to get the “finite covering”
argument. But some special cases may not require the topological definition
of compactness. For instance, if the set of discontinuities form a convergent
sequence, then it still can be easily showed that the function f is Riemann
integrable. We will see some examples later.
• Actually, we have the theorem due to Lebesgue, which says that f : [a, b]→ R

is Riemann integrable if and only if f is bounded and the set of points at which
the function f is discontinuous has Lebesgue measure zero.

Example 33.1. Here are some (non)examples:
• Consider the floor function f(x) = bxc. Since f is monotonically increasing it

is integrable on any [a, b].
• Let f : [0, 1]→ R be given by

f(x) =

{
0 if x = 0;

1/n if 1
n+1 < x ≤ 1

n for some n ∈ N.

Then again the function f is monotonically increasing on [0, 1], thus it is
Riemann integrable even if it has infinitely many discontinuities.
• Let f : [0, 1]→ R be given by

f(x) =

{
0 if x = 0 or x = 1

n for some n ∈ N;

1 otherwise.

Notice that the function is not continuous precisely at {1/n | n ∈ N} ∪ {0}.
Now for any ε > 0 there exists some N ∈ N such that 1/N < ε/2. Now consider
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the intervals [0, 1/N ] and [1/N, 1]. Note that there are only finitely many n ∈ N
such that 1 ≤ n ≤ N therefore f is integrable on [1/N, 1]. It means that there
exists a partition Pε of [1/N, 1] such that

U(f, Pε)− L(f, Pε) < ε/2.

Now consider the partition P = Pε ∪ {0}, then

U(f, P )− L(f, P ) =
ε

2
− 0 + U(f, Pε)− L(f, Pε) < ε.

Thus we proved that f is integrable on [0, 1]. The proof can be generalized
into any cases when the points of discontinuity form a convergent sequence.
• The Dirichlet function f : [0, 1]→ R defined by

f(x) =

{
1 if x is rational;

0 if x is irrational,

is not Riemann integrable. This can be easily shown using Riemann upper/lower
sums.
• Consider a slightly modified function f : [0, 1]→ R given by

f(x) =

{
1/2 if x is rational;

x if x is irrational.

For any partition P , we can assume P contains the mid point 1/2 since adding
this point will only make the upper sum smaller and lower sum greater (thus
it doesn’t affect the proof). Say

P = {x0 = 0, x1, · · · , xn = 1/2, xn+1, · · · , xn+m}.

By the density of rationals and irrationals in R, we have
(1) For all i = 1, · · · , n,

Mi(f) = sup{f(x) | x ∈ [xi−1, xi]} =
1

2
,

mi(f) = inf{f(x) | x ∈ [xi−1, xi]} = xi−1.

(2) For all j = 1, · · · ,m,

Mn+j(f) = sup{f(x) | x ∈ [xn+j−1, xn+j ]} = xn+j ,

mn+j(f) = inf{f(x) | x ∈ [xn+j−1, xn+j ]} =
1

2
.
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Therefore we can compute the upper and lower Riemann sums as follows:

U(f, P ) =

n∑
i=1

1

2
(xi − xi−1) +

m∑
j=1

xn+j(xn+j − xn+j−1)

≥ 1

2

1

2
+

1

2

m∑
j=1

(x2n+j − x2n+j−1)

=
1

4
+

1

2

(
1− 1

4

)
=

5

8
,

where the inequality is due to xn+j ≥ xn+j+xn+j−1

2 . And

L(f, P ) =

n∑
i=1

xi−1(xi − xi−1) +

m∑
j=1

1

2
(xn+j − xn+j−1)

≤ 1

2

n∑
i=1

(x2i − x2i−1) +
1

2

1

2

=
1

2

(
1

4
− 0

)
+

1

4
=

3

8
,

where the inequality is due to xi−1 ≤ xi+xi−1

2 . Thus we have

U(f, P )− L(f, P ) ≥ 1

4

therefore the function f cannot be Riemann integrable on [0, 1].

34 December 1

We can also use upper/lower Riemann sums to find the integral of an integrable
function. For example,

Example 34.1. Consider the function f : [0, 1] → R defined by f(x) = x. Let
P = {x0 = 0, x1, · · · , xn = 1} be a partition of [0, 1]. It is easy to see that Mi(f) = xi
and mi(f) = xi−1. Thus

U(f, P ) =

n∑
i=1

xi(xi − xi−1),

L(f, P ) =

n∑
i=1

xi−1(xi − xi−1).
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Then we get

U(f, P ) + L(f, P ) =

n∑
i=1

(x2i − x2i−1) = 1,

U(f, P )− L(f, P ) =

n∑
i=1

(xi − xi−1)2.

Therefore we can express the upper and lower Riemann sums separately as follows

U(f, P ) =
1

2
+

1

2

n∑
i=1

(xi − xi−1)2,

L(f, P ) =
1

2
− 1

2

n∑
i=1

(xi − xi−1)2.

In particular, we can partition [0, 1] evenly into n subintervals, denote by Pn such
special partition. Then

n∑
i=1

(xi − xi−1)2 =
n

n2
=

1

n
.

Thus
1

2
− 1

2n
= L(f, Pn) ≤

∫ 1

0

f ≤
∫ 1

0

f ≤ U(f, Pn) =
1

2
+

1

2n

and let n→∞ we obtain that f is integrable on [0, 1] and∫ 1

0

f(x)dx =
1

2
.

Recall that the tagged partition (P, T ) is a partition P of [a, b] with tagged points
in each subinterval at which the function is evaluated to contribute to the sum.
We defined the Riemann sum S(f, P, T ) with respect to the tagged partition in the
natural way without taking sup and inf of the function at each subinterval.

Now the function f : [a, b]→ R being Riemann integrable on [a, b] is equivalent
to saying there exists I ∈ R such that lim||P ||→0 S(f, P, T ) = I for any tag T of P ,
i.e. for any ε > 0 there exists δ > 0 such that for any partition P with ||P || < δ we
have |S(f, P, T )− I| < ε holds for any tag T of P .

The examples we have seen before using upper/lower Riemann sums to prove
integrability can also be shown using Riemann sum.

Example 34.2. Consider the function f : [0, 1]→ R defined by

f(x) =

{
1/n if x = 1

n for some n ∈ N;

0 otherwise.
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For any ε > 0 define
Fε = {x ∈ [0, 1] | f(x) ≥ ε}.

Then Fε is a finite set and set nε = |Fε|. Let (P, T ) be any tagged partition of [0, 1]
with ||P || < δ (we will determine δ in terms of ε later). Decompose (P, T ) as (P1, T1)
where the tags are in Fε and (P2, T2) where the tags are in [0, 1] \ Fε. Then

0 ≤ S(f, P, T ) = S(f, P1, T1) + S(f, P2, T2) ≤ nεδ + ε < 2ε

if we set nεδ < ε. This is because for S(f, P1, T1) we have

S(f, P1, T1) ≤ nε · 1 · δ

where nε meaning at most nε such points in T1, 1 means f(x) ≤ 1 and δ is the bound
for the norm of P ; For S(f, P2, T2) < ε it is because f(x) < ε by the assumption
that T2 are not chosen from Fε. Therefore f is Riemann integrable on [0, 1] with∫ 1

0
f = 0.

Using the similar idea we have prove the following fact:

Proposition 34.3. Given f : [a, b]→ R bounded, and f(x) = 0 except for a finite
number of points c1, · · · , cn ∈ [a, b], then f is Riemann integrable on [a, b] and∫ b
a
f = 0.

Proof. Let M = max{f(ci) | i ∈ [n]}. For any ε > 0 take δ = ε
Mn . Let (P, T ) be

any tagged partition with ||P || < δ. Then we can decompose (P, T ) into two disjoint
parts: (P1, T1) as subpartition with tags in {ci}; (P2, T2) as subpartition with tags
not in {ci}. Then

|S(f, P, T )| = |S(f, P1, T1) + S(f, P2, T2)| < n
ε

nM
M + 0 = ε.

Therefore f is Riemann integrable on [a, b] with
∫ b
a
f = 0.

Remark 34.4. The above proposition can be rephrased as: if f, g : [a, b]→ R and
f(x) = g(x) except for a finite number of points in [a, b] then f is integrable on [a, b]

if and only if g is integrable and in this case
∫ b
a
f =

∫ b
a
g. It means that changing a

function at finite number of points does NOT affect the Riemann integrability and
the value of integral.

BUT, the conclusion may fail if “finitely many points” is replaced by “ countably
infinite number of points”. The followings are two simple reasons:
• We can turn a bounded function into an unbounded function by changing the

values at countably infinite number of points. Consider f : [0, 1]→ R given by

f(x) =

{
n if x = 1/n for some n ∈ N;

0 otherwise.
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Such function f equals 0-function except at 1/n. But f is unbounded so it
cannot be Riemann integrable.
• The conclusion may still not hold if f is bounded. Take for example the

Dirichlet function. The function is bounded and equals 0 except at Q ∩ [0, 1]
which is countable. But the Dirichlet function is not Riemann integrable.

35 Quiz 11

1. (5 pts) Let a, b ∈ R with a < b, and let P = {x0 = a, x1, · · · , xn−1, xn = b} be a
partition of the interval [a, b]. Suppose that f : [a, b]→ R is bounded.

a) (3 pts) State the definition of upper Riemann sum of f with respect to the
partition P explicitly.

Proof. The upper Riemann sum of f with respect to the partition P is defined
to be

U(f, P ) =

n∑
i=1

Mi(f)(xi − xi−1)

where Mi(f) = sup{f(x) | x ∈ [xi−1, xi]}.
b) (2 pts) State explicitly the definition of upper integral of f on [a, b].

Proof. The upper integral of f on [a, b] is∫ b

a

f = inf{U(f, P ) | P is a partition of [a, b]}.

2. (5 pts) Suppose that f(x) = 0 if x ∈ [0, 1), f(x) = 1 if x ∈ [1, 2), and f(x) = 2
if x ∈ [2, 3]. Give an example of a partition P of the interval [0, 3] for which
U(f, P )− L(f, P ) < 0.1.

Proof. The function f(x) has two jump discontinuities, one at x = 1 the other at
x = 2. Therefore the nonzero difference of U(f, P ) and L(f, P ) only happens at
those subintervals (given by the partition) containing x = 1, 2 as interior points,
or including these two points as the right endpoints. Start with the following
partition,

P = {x0 = 0, x1, x2 = 1, x3, x4 = 2, x5 = 3}
and assume for simplicity ∆x := x2 − x1 = x4 − x3. Therefore the difference is
given by

U(f, P )− L(f, P ) = (1− 0)∆x+ (2− 1)∆x = 2∆x

since on other subintervals, namely on [0, x1], [x2, x3], [2, 3] the sup and inf of f(x)
are the same. So in order to make U(f, P ) − L(f, P ) < 1/10, we only need to
make 2∆x < 1/10, i.e. ∆x < 1/20. Therefore we can take for example

P = {x0 = 0, x1 = 0.99, x2 = 1, x3 = 1.99, x4 = 2, x5 = 3}.
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36 December 6

Recall the fundamental theorem of calculus:
• (FTC I) Let f be a Riemann integrable function on [a, b]. Define F on [a, b] by

F (x) =

∫ x

a

f(t)dt.

Then F (x) is continuous on [a, b]. Moreover if f is continuous at a point
c ∈ [a, b] then F is differentiable at c and F ′(c) = f(c).

Remark 36.1. (1) Function F is uniquely determined up to addition of a
constant.

(2) FTC I tells us that any continuous function has an antiderivative which
is differentiable. But sometimes it is not easy to write down the formula
explicitly, for example f(x) = e−x

2

.
A discontinuous function may have an antiderivative. Consider

F (x) =

{
x2 sin 1

x if x 6= 0;

0 if x = 0.

Note that this function F (x) is differentiable but not continuously differ-
entiable. Let f(x) = F ′(x), i.e. F is an antiderivative of f . Note that f is
not continuous at zero because F ′ is not. So it is possible for a function f
which has discontinuity at some points but still admits an antiderivative.
BUT, by Darboux theorem (IVP for derivative), if f is the derivative of
F on some interval, then f has intermediate value property (no matter f
is continuous or not). This tells us that a discontinuous function without
IVP does NOT have an antiderivative. For example, a function with jump
discontinuities such as floor function.

Example 36.2. Let f : [0, 2]→ R be defined by

f(x) =

{
0 if x 6= 1;

1 if x = 1.

Does there exist a function F : [0, 2]→ R such that F ′ = f on [0, 2]?
The answer is no. Assume such F exists. Since f(x) = 0 on (0, 1) then
F = a constant in (0, 1); likewise F = b constant in (1, 2). But if F exists
it has to be continuous on [0, 2], in particular continuous at 1. It forces
a = b = f(1) = 1. Thus F is constant in (0, 2). It leads to a contradiction
F ′(1) = f(1) = 1 = 0. Therefore such function does not exist.

(3) The differentiability of F at c only depends on the continuity of f at
the same point c. But the continuity of F ′ at c doesn’t come from
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differentiablity of f at c. To be precise, let’s assume f : [a, b] → R
Riemann integrable and define F (x) on [a, b] as in FTC I. Let c ∈ (a, b)
be an interior point.

Example 36.3. If f is differentiable at c, then F is differentiable at c
but may not be continuously differentiable, i.e. F ′ may not be continuous
at c. Because we only have F ′(c) = f(c) holds at point c, not in some
neighborhood of c but continuity is a local property. The following example
shows that F ′ may not exist in any arbitrarily small neighborhood of c,
i.e. F is not differentiable in any small neighborhood of c.
Define

f(x) =



1 if x ∈ (−∞,−1] ∪ [1,∞);
1
22 if x ∈ (−1,− 1

2 ] ∪ [ 12 , 1);
1
32 if x ∈ (− 1

2 ,−
1
3 ] ∪ [ 13 ,

1
2 );

...
1
n2 if x ∈ (− 1

n−1 ,−
1
n ] ∪ [ 1n ,

1
n−1 );

...

0 if x = 0.

It is easy to show by definition that f is differentiable at 0 with f ′(0) = 0
(Exercise). Due to symmetry we only need to consider f(x) on [0,∞), the
other half is similar. Since f is increasing on [0,∞) and decreasing on
(−∞, 0] it is Riemann integrable on R. And F (x) =

∫ x
0
f(t)dr is piecewise

linear with different slopes given by the value of f . So F has sharp corners
precisely at {±1/n}. It can be checked that F ′ does not exist at those
{±1/n}. And thus F ′ cannot be continuous at 0 by using sequential
criterion of continuity and taking sequence xn = 1/n for example.

(4) FTC I also provides a way to define transcendental functions i.e. functions
not expressed as a finite combination of algebraic operations, as integral
of elementary functions.
For example, consider

ln(x) =

∫ x

1

1

t
dt

where the integral is well-defined on (0,∞) since 1/t is continuous on
[1, x] for x > 1 or [x, 1] for 0 < x < 1. Thus

d

dx
ln(x) =

1

x

and we can deduce the properties of ln(x) from this presentation. For
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instance,

ln(x) + ln(y) =

∫ x

1

dt

t
+

∫ y

1

dt

t
=

∫ x

1

dt

t
+

∫ xy

x

ds

s
=

∫ xy

1

dt

t
= ln(xy)

where we are using substitution s = xt.

• (FTC II) Suppose f is continuous on [a, b] and differentiable in (a, b) with f ′

being Riemann integrable on [a, b]. Then∫ b

a

f ′(x)dx = f(b)− f(a).

Remark 36.4. (1) It is not necessary to assume the existence of the right
derivative of f at b or the left derivative of f at b.

(2) FTC II gives a way to find the exact value of an integral as long as we
can find an antiderivative of the integrand.

(3) One example of using FTC II to find the value of infinite sum. For example
we consider f : [1, 2]→ R and f(x) = 1/x. Then f is integrable because
it is continuous. Let n ∈ N take partition Pn with tags Tn by taking left
endpoints:

Pn = {1, 1 + 1/n, · · · , 1 + k/n, · · · , 1 + n/n},
Tn = {1 + k/n | k = 0, · · · , n− 1}.

Then ||Pn|| → 0 as n→∞. The Riemann sum can be computed as

S(f, Pn, Tn) =

n∑
k=1

1

1 + k−1
n

1

n
=

n∑
k=1

1

n+ k − 1
.

Thus

lim
n→∞

n∑
k=1

1

n+ k − 1
→
∫ 2

1

1

x
dx = ln(2)

by FTC II.

37 December 8

1. With an example show that the identity
∫ 1

0
f +

∫ 1

0
g =

∫ 1

0
(f + g) may be false

if f or g are not integrable.

Proof. Let f, g : [0, 1]→ R with f being the Dirichlet function and g = 1− f :

f(x) =

{
1 if x ∈ Q
0 if x /∈ Q

, g(x) =

{
0 if x ∈ Q
1 if x /∈ Q

.
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Note that both f and g are not Riemann integrable on [0, 1]. And f + g = 1 so∫ 1

0

f =

∫ 1

0

g = 1,

∫ 1

0

(f + g) = 1.

Thus ∫ 1

0

f +

∫ 1

0

g = 2 >

∫ 1

0

(f + g) = 1.

2. Consider the function f : R→ R defined by

f(x) =

{
2|x|+ 1 if x ∈ Q
0 if x /∈ Q

Show that f is not Riemann integrable on [−1, 2].

Proof. First note that f(x) ≥ 1 for all x ∈ Q. By the density of Q and Qc in
R, for any partition P = {x0 = −1, x1, · · · , xn = 2} of [−1, 2], we can compute
its corresponding upper/lower Riemann sums:

U(f, P ) ≥
n∑
i=1

(xi − xi−1) = 2− (−1) = 3;

L(f, P ) = 0.

Therefore U(f, P )− L(f, P ) ≥ 3 for any partition P of [−1, 2] which implies f
is not Riemann integrable on [−1, 2].

3. Consider the function f(x) = bxc. Using theorems we proved in class explain
why f ∈ R([0, 4]). For each ε > 0 find an explicit n so that a standard partition
Pn of [0, 4] satisfies U(f,Pn)− L(f,Pn) < 1

100 .

Proof. The function is increasing on [0, 4] thus it is Riemann integrable on [0, 4].
Or using the fact that such function only has finitely many discontinuities on
[0, 4]. To make the inequality hold for ε = 1/100, take for example n = 4000:

P4000 =

{
0,

1

1000
, · · · , 999

1000
, 1,

1001

1000
, · · · , 1999

1000
, 2,

2001

1000
, · · · , 2999

1000
, 3, · · · , 4

}
.

Then

U(f,Pn)− L(f,Pn) =
4

1000
<

1

100
.

4. We mentioned in class that Thomae’s function

f(x) =

{
1/q if x = p/q with p, q ∈ N coprime

0 otherwise

is Riemann integrable on [0, 1]. Show that
∫ 1

0
f = 0.
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Proof. By density of irrationals, we know L(f, P ) = 0 for any partition of [0, 1].
For any ε > 0 there exists N ∈ N such that 1/N < ε/2. Consider the set

Fε = {x ∈ [0, 1] | f(x) ≥ ε/2}.

Then the set Fε is finite since there are only finitely many rational numbers
in [0, 1] with denominator less and equal to N . Let |Fε| = l. Now take
Pε = {x0 = 0, x1, · · · , xn = 1} be a partition of [0, 1] such that ||Pε|| < ε/4l.
Then

U(f, Pε) < 1 · 2l · ε
4l

+
ε

2
· (1− 0) = ε.

Therefore the Thomae’s function is Riemann integrable on [0, 1]. Since the
lower Riemann sum is always 0 then the lower integral is 0, and the function is

proved to be Riemann integrable therefore
∫ 1

0
f = 0.

5. Prove that if f : [a, b] → R, where a < b, is continuous and nonnegative on
[a, b] then ∫ b

a

f = 0 =⇒ f = 0 on [a, b].

Proof. By way of contradiction suppose f(c) > 0 for some c ∈ [a, b]. I will
assume c ∈ (a, b) the endpoint case is similar. By assumption f is continuous
so there exists δ > 0 sufficiently small such that (c− δ, c+ δ) ⊆ (a, b) and

|f(x)− f(c)| < f(c)

2

whenever x ∈ (c− δ, c+ δ). Then

f(x) = f(c) + f(x)− f(c) ≥ f(c)− |f(x)− f(c)| ≥ f(c)− f(c)

2
=
f(c)

2

for x ∈ (c− δ, c+ δ). Therefore∫ b

a

f =

∫ c−δ

a

f +

∫ c+δ

c−δ
f +

∫ b

c+δ

f ≥ 2δ
f(c)

2
> 0

which is a contradiction. Thus such c does not exist.
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