
COMPREHENSIVE EXAM

ZHENGNING HU

1 QUESTIONS FROM DAN EDIDIN

From the paper The Chow ring of the stack of hyperelliptic curves of odd genus by Andrea Di
Lorenzo.

1. What is a GL3-counterpart of a scheme Y with a PGL2 action? Prove that there is an
embedding of PGL2 into GL3 to conclude that GL3 /PGL2 is a GL3-counterpart of Spec k.
(Hint: think about the adjoint representation.)

Answer : Note that when we say a scheme, it is always of finite type over Spec k. Given
a scheme Y with a PGL2 action, a GL3-counterpart of Y is a scheme X endowed with
a GL3 action such that [X/GL3] ∼= [Y/PGL2] as quotient stacks, i.e., over any k-scheme
S, [X/GL3](S) ∼= [Y/PGL2](S) is an equivalent of categories. A quotient stack [X/G] is
a stack of G-torsors with an equivariant morphism on X. No matter whether the group
scheme G acts freely on X or not, X → [X/G] always forms a G-torsor. One of the simplest
examples for quotient stack is [Spec k/G] which is just a stack of G-torsors and it is the
classifying stack BG.

The idea of constructing the GL3-counterpart of a PGL2-scheme is that given a morphism
of group schemes H → G, it induces a functor F from the category of H-schemes to the
category of G-schemes such that [X/H] ∼= [F (X)/G] is an isomorphism.

Now there are two questions we can ask: Is it legitimate to define a GL3-counterpart of
a PGL2-scheme? Or in other words, does a GL3-counterpart always exist? If it is, what is
the main advantage of taking the GL3-counterpart?

Suppose that we have a morphism of group schemes ρ : H → G and a scheme X with an
action of H, then we get a H-torsor f : X → [X/H], which is, étale locally isomorphic to
U ×H. Intuitively, we can view the torsor f as defined by a covering {Ui} with a collection
of transition functions {ϕij} encoding the gluing data. Then the covering {Ui} with G-
valued functions {ρ ◦ ϕij} will define a G-torsor X ×H G→ [X/H] over the quotient stack
[X/H] where the G-scheme X ×H G = (X × G)/H endowed with a right diagonal action
of H is indeed a G-counterpart of X.

Consider the terminal object Spec k in the category Sch, equipped with the trivial action
of PGL2. If one can find a GL3-counterpart of Spec k, denoted by S, then by pulling back
along the GL3-torsor S → BPGL2 of the scheme X → Spec k representing some stack, one
can easily get its GL3-counterpart. Therefore it boils down to finding a GL3-counterpart of
Spec k. First of all since PGL2 and SL2 share the same Lie algebra, a 3-dimensional vector
space consisting of traceless 2× 2 matrices with basis

e1 =

(
0 1
0 0

)
, e2 =

(
0 0
1 0

)
, e3 =

(
1 0
0 −1

)
.
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We can define the adjoint representation of PGL2,

ρ : PGL2 −→ GL(pgl2) = GL3

[A] 7−→ (X 7→ AXA−1).

It is indeed a morphism of algebraic group schemes since it is defined by polynomials. As
mentioned before, we view Spec k as a PGL2-scheme with trivial action. Then we get a
PGL2-torsor Spec k → [Spec k/PGL2] over the classifying stack BPGL2. Together with the
above adjoint representation ρ of PGL2, the induced GL3-torsor is given by

(Spec k ×Spec k GL3)/PGL2
∼= GL3 /PGL2 −→ BPGL2

where the GL3-counterpart is the right quotient space Spec k×PGL2 GL3 with (right) action
under (x, g) ∼ (x, gρ(h)) = (x, ρ(h)−1g) for g ∈ GL3, h ∈ PGL2. Therefore we proved
GL3 /PGL2 is a GL3-counterpart of Spec k.

One of the advantages to finding a GL3-counterpart of some PGL2-scheme is that PGL2

is not a special group where some equivariant computation may be hard to carry on. It
means that there is some PGL2-torsor that is not Zariski-locally trivial but only étale-locally
trivial. For instance, since the construction of GL3-counterpart is functorial, we can pass
the computation of the equivariant Chow ring APGL2

∗ (X) to the computation of AGL3
∗ (Y )

where Y is a GL3-counterpart of X. In this paper, the author is using a GL3-counterpart
of Hg when g is odd, to compute its integral Chow ring.

2. Let S be the set of forms of degree 2 in 3 variables which are smooth. Prove that S
is a GL3-counterpart of Spec k. Does this automatically imply that S is isomorphic to
GL3 /PGL2?

Answer : We denote by S the set of smooth ternary quadratic forms. It is an open
subscheme of the affine space A(2, 2), the space of ternary quadratic forms. Before proving
S is a GL3-counterpart of Spec k, first recall that M0 is the moduli stack of smooth rational
curves. Since all rational curves are isomorphic, M0 is just a point as a moduli space, but
it consists of more information as a stack and moreover,

M0
∼= BAut(P1) ∼= BPGL2

∼= [Spec k/PGL2].

It suffices to prove that the scheme S with action of GL3 given by

A · q(x) = (detA)q(A−1x), x = (x0, x1, x2),

for A ∈ GL3 and q(x) ∈ S, is a GL3-torsor of M0. The idea is to construct prestacks
in groupoids over Sch which are easy to see being GL3-torsors over M0 and also being
isomorphic to S.

There is a general result by cohomology and base change which is commonly used in
moduli theory. Given a family of smooth curves of genus g, namely π : C → S, which is a
flat and proper morphism, the pushforward π∗ω

⊗k
C/S when k ≥ 1 is locally free of rank

h0(Cs, ω⊗k
Cs ) = deg(ω⊗k

Cs )− g + 1

= (2k − 1)(g − 1)

where h1(Cs, ω1−k
Cs ) = 0. Thus it yields an embedding C → P(π∗ω⊗k

C/S).

Given a family of smooth rational curves π : C → S, take π∗ω
∨
C/S , which is a locally free

sheaf of rank 3 since by checking the geometric point s ∈ S, we have h1(Cs, ω∨
Cs) = 0 by

Serre duality and thus h0(Cs, ω∨
Cs) = 2 + 1 = 3. We then obtain an embedding

i : C ↪→ P(π∗ω∨
C/S) = P2

S .
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Over any geometric point of the family S, it is determined by the complete linear system
|O(2)|.

By using the above fact about the rank 3 vector bundle over scheme S, we can construct
the following GL3-torsor E over M0. Over a scheme S ∈ Sch, it is a groupoid

E(S) = {π : C → S, α : π∗ω
∨
π
∼= O⊕3

S }
with a natural GL3 action on the rank 3 bundles α. Thus E forms a GL3-torsor over M0.
But it is still hard to see E ∼= S. Now we define another intermediate prestack E ′. Over a
scheme S, it is defined by

E ′(S) =




C P2
S

S

i

π , β : i∗OP2
S
(1) ∼= ω∨

π




and it can also be written as

E ′(S) = {π : C → S, π∗ω
∨
π
∼= H0(P2

S ,O(1))⊗OS}.
And E ∼= E ′. Therefore it suffices to check E ′ ∼= S. Giving a morphism a sheaves is
equivalent to giving a global section, so the isomorphism of sheaves β can be viewed as a
nonzero section of H0(C, i∗O(1) ⊗ ωπ). Let I be the ideal sheaf of the image i(C) in P2

S .
Then

H0(C, i∗O(1)⊗ ωπ) = H0(P2
S , i∗(i

∗O(1)⊗ ωπ))

= H0(P2
S , i∗(i

∗(O(1)⊗ ωP2
S/S

⊗ I∨)))

= H0(P2
S ,O(−2)⊗ I∨ ⊗ i∗OC).

Consider the exact sequence

0 → I → OP2
S
→ i∗OC → 0.

Twist by O(−2)⊗ I∨ and take the long exact sequence of cohomology, we get

H0(P2
S ,O(−2)⊗ I∨) = H0(P2

S , i∗OC ⊗O(−2)⊗ I∨).

It means that a nonzero global section of i∗OC⊗O(−2)⊗I∨ induces a section of O(−2)⊗I∨

which induces an isomorphism O(−2) ∼= I canonically. Since we have an injective morphism
O(−2) ↪→ OP2

S
, which yields a morphism of sheaves O → O(2) and it determines canonically

a global section q in H0(P2
S ,O(2)). The canonically defined section q has smooth zero locus

in P2
S and it can viewed as an element in S. Conversely, given a section q ∈ H0(P2

S ,O(2)),
or equivalently, given a smooth ternary quadratic form, with zero locus Q ⊂ P2

S , since
IQ ∼= O(−2) ∼= ωP2

S
(1) we can construct the isomorphism β via

ω∨
π = i∗(ω∨

P2
S
⊗ I) ∼= i∗O(1).

The action of GL3 on S is compatible with that on the invertible sheaves IQ ∼= ωP2
S
(1)

induced by the corresponding action on P2
S = P(VS) where VS is a three dimensional vector

space over S, since ωP2
S
(1) ∼= O(−2)⊗ detVS .

Now we have shown that S with the GL3 action defined as above is indeed a GL3-
counterpart of Spec k. Together with the result from Question 1, we get two GL3-torsors
over M0. It does NOT automatically imply that GL3 /PGL2 is isomorphic to S as k-
schemes. But if we can prove one of the followings holds, then we can deduce this isomor-
phism:
(1) There is a GL3-equivariant morphism GL3 /PGL2 → S;
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(2) The only faithful 3-dimensional representation of PGL2 is the adjoint representation.
Or alternatively, since the representation of the quotient is deduced from the original
group, it suffices to check that the only 3-dimensional representation of GL2 which acts
trivially on its center is the adjoint representation. Note that this approach heavily
relies on the ground field k.

Let’s first look at the second statement (2). One fact from representation theory about
the representation of GL2 over an infinite field says that all irreducible representations
of GL2 have the form Eλ as a Schur module. Moreover since PGL2 is the quotient of
GL2 modulo the nonzero scalar matrices, the determinant representation of PGL2 must be
trivial. Therefore the only 3-dimensional representation of GL2 acting trivially on its center
must be the (irreducible) adjoint representation associated to the Schur module E(2,2) with
basis as semi-standard tableaux of shape (2, 2) with entries chosen from {1, 2, 3}.

Let’s then turn to the first statement. It is easy to write the embedding ρ : PGL2 ↪→ GL3

explicitly with the basis e1, e2, e3 defined in Question 1. Namely,

ρ :

[
a b
c d

]
7−→ 1

ad− bc

 a2 −b2 −2ab
−c2 d2 2cd
−ac bd ad+ bc

 .

Now defined a PGL2-invariant ternary quadratic form f ∈ S = Asm(2, 2) by

f(x) = x0x1 + x22, x = (x0, x1, x2).

Then it can be checked that PGL2 = GL2 /Gm is isomorphic as groups to

O(f) = {T ∈ GL3 | f(Tx) = f(x),detT = 1}.

Thus we can define the map

GL3 −→ S
T 7−→ f(Tx)

which is of course a morphism of (quasi)-affine varieties and with elements in PGL2 ⊂ GL3

fixing f(x). So this map factors through the quotient GL3 /PGL2 → S. One should
also check details such as that the discriminant locus of A(2, 2) is determined fully by the
nonvanishing of determinants of elements in GL3, and the morphism is GL3-equivariant, etc.
So that we obtain a GL3-equivariant well-defined moprhism GL3 /PGL2 → S where both
are GL3-torsors over M0

∼= BPGL2 and then they have to be isomorphic by descent. To
be precise, we could base change to a suitable étale cover U , and thus the GL3-equivariant
morphism becomes U × GL3 → U × GL3 between two trivial GL3-bundles defined by
multiplication to the second factor by some element in GL3. So it is an isomorphism and
descends to the original equivariant map to be an isomorphism as well.

3. Let A(1, 2n) be the vector space of homogeneous polynomials of degree 2n with the action
of GL2 given by

A · f(x, y) = det(A)nf(A−1(x, y)).

Prove that this action descends to an action of PGL2 and describe with some details the
GL3-counterpart of this space as well as the GL3-counterpart of P(A(1, 2n)).

Answer : First of all let us prove the action of GL2 descends to an action of PGL2. Two
elements A,A′ ∈ GL2 are equivalent in PGL2 if and only if there exists some nonzero scalar
matrix λI with λ ∈ Gm such that A′ = λA. Define the action of PGL2 on A(1, 2n) by

[A] · f(x, y) = det(A)nf(A−1(x, y)).
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In order to prove the GL2-action descends to the action of PGL2 above, we only need to
check [A] · f(x, y) = [A′] · f(x, y). This is easy to check since

[A′] · f(x, y) = det(A′)nf((A′)−1(x, y))

= (λ2)n det(A)nf(λ−1A−1(x, y))

= λ2n det(A)nλ−2nf(A−1(x, y))

= det(A)nf(A−1(x, y))

= [A] · f(x, y).
Next we want to find the GL3-counterpart of A(1, 2n) as well as its projectivization

P(A(1, 2n)).
By the functorial construction of GL3-counterpart, our goal is to find a nice and explicit

description of the top-left corner of the following Cartesian diagram

[A(1, 2n)/PGL2]×M0 S S = Asm(2, 2)

[A(1, 2n)/PGL2] M0 = [Spec k/PGL2]

where [A(1, 2n)/PGL2] is the quotient stack and the action of PGL2 on A(1, 2n) is induced
from the action of GL2 as we argue in the first part of this question. Recall that A(n,m)
is the scheme representing the sheaf sending a scheme S to the space of global sections
H0(Pn

S ,O(m)). Over any k-scheme S, a degree 2n binary form in A(1, 2n)(S) can be viewed
as a global section in H0(P1

S ,O(2n)), then it allows us to consider a rigidified auxiliary stack
of A(1, 2n):

Ã(1, 2n)(S) := {π : C → S, ϕ : C ∼= P1
S , σ ∈ H0(C, ω−⊗n

π )}.
The free actions of PGL2 are compatible since ω−⊗n

π
∼= O(2n)⊗ (detVS)

n for P1
S = P(VS).

Moreover

[Ã(1, 2n)/PGL2](S) = {π : C → S, σ}.

Now it reduces to considering the fiber product [Ã(1, 2n)/PGL2]×M0 E ′. Its objects over
a scheme S are


C P2

S

S

i

π , σ ∈ H0(C, T n
C/S), β : i∗O(1) ∼= TC/S


 .

Note that given a family of rational curves π : C → S, a section q ∈ H0(P2
S ,O(2)), or

an element in S is equivalent to a pair (i, β). And moreover, under the isomorphism
β : i∗O(1) ∼= TC/S , a global section σ ∈ H0(C, T n

C/S) is given by f ∈ H0(C, i∗O(n) ∼= OC(n)).

Combine all these facts, we can define the GL3-torsor over [A(1, 2n)/PGL2] as the scheme
Vn representing a stack in sets over Sch by

Vn(S) = {(q, f)}
where q ∈ H0(P2

S ,O(2)) with zero locusQ ⊂ P2
S being smooth over S, and f ∈ H0(Q,OQ(n)).

Therefore such Vn is a GL3-counterpart of A(1, 2n) with action of GL3 defined by

A · (q(x), f(x)) = (det(A)q(A−1x), f(A−1x)).

Likewise we also have that Vn is a GL3×Gm-counterpart of A(1, 2n) by considering the
action of Gm on Vn as multiplication on the second factor and on A(1, 2n) by multiplication.
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Note that the vector bundle Vn defined as above can also be viewed as the sheafification
of the sheaf defined by

(S
q7−→ S) 7−→ H0(Q,OQ(n)) =

H0(P2
S ,O(n))

q ·H0(P2
S ,O(n− 2))

.

Consider the action of Gm(S) on H0(Q,OQ(n)) by multiplication, we get the projectiviza-
tion P(Vn) of Vn given by the sheafification of

(S
q7−→ S) 7−→ (H0(Q,OQ(n)) \ {0})/Gm(S).

This is equivalent to considering the action of Gm on Vn \ σ0 defined by

λ · (q, f) = (q, λf)

where σ0 is the zero section of OQ(n). Accordingly we can also consider the action of Gm on
A(1, 2n)\{0} by multiplication and obtain the projective space P(A(1, 2n)). Since the torus
action and the action of GL3 commute and {0} in A(1, 2n) is exactly a GL3-counterpart of
the zero section σ0 in Vn, we have that Vn \ σ0 is a GL3×Gm-counterpart of A(1, 2n) \ {0}.
And thus P(Vn) is a GL3-counterpart of P(A(1, 2n)) by taking quotient with respect to the
Gm-action.

4. Describe the GL3 analogue of the discriminant locus in A(1, 2n) with some explanation.
Answer : Let ∆ ⊂ A(1, 2n) be the discriminant locus parametrizing singular binary

forms of degree 2n, i.e. binary forms with multiple roots. The discriminant locus ∆ is
a PGL2-invariant codimension one closed subscheme of A(1, 2n) given by a homogeneous
polynomial of degree 4n− 2 in terms of the coefficients (A0, · · · , A2n) of binary forms that
A(1, 2n) parametrizes.

The goal of this question is to find a GL3-counterpart of ∆. By the result from Question
3, we get Vn as a GL3-counterpart of the affine space A(1, 2n). The natural guess is the
pairs (q, f) ∈ Vn such that the closed subscheme V (q, f) ⊂ P2 given by the homogeneous
ideal (q, f) is singular. This is because the zero locus Q ⊂ P2 is smooth, V (q, f) being
singular boils down to the form associated to the section f being singular. To be precise,
we define the subset

D = {(q, f) ∈ Vn | V (q, f) ⊂ P2 is singular} ⊂ Vn.

The set D indeed has a scheme structure. Here is the reason. We consider the closed
subscheme D′ of S × A(2, n)× P2 defined by

D′ = {(q, f, p) ∈ S × A(2, n)× P2 | p is a singular point of V (q, f) ⊂ P2}
= {(q, f, p) | q(p) = f(p) = 0, J(q,f)(p) does not have maximal rank}

where J(q,f) is the Jacobian matrix of (q, f). Thus D inherits the scheme structure from D′

along the following projection followed by the quotient map:

S × A(2, n)× P2 → S × A(2, n) → Vn

by considering Vn as the cokernel of the map

S × A(2, n− 2) −→ S × A(2, n)
(q, g) 7−→ (q, qg).
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Therefore it is easy to see that D → ∆×M0 S given by sending (q, f) to
Q P2

S

S

i

π , f ∈ H0(Q,OQ(n)), i
∗O(1) ∼= TQ/S


where as usual, Q is the zero locus of the section q ∈ S, is an isomorphism. Therefore D is
a GL3-counterpart of the discriminant locus ∆ ⊂ A(1, 2n).

5. Use this to give a presentation of the stack Hg as a quotient by GL3×Gm.
Answer : First let us recall the following equivalent descriptions of Hg, the moduli stack

of genus g smooth hyperelliptic curves. First of all, given a family of hyperelliptic curves
π : X → S over a scheme S, it is equivalent to giving a family of rational curves p : C → S
over the same base scheme S together with a line bundle L over C of degree −g − 1 and
a global section σ ∈ H0(C,L−2) with zero locus finite and étale of degree 2g + 2 over the
base S. Therefore the pair (L, σ) consists of all the information for getting the double cover
f : X → C branched along the zero locus of σ.

In Arsie and Vistoli’s paper Stacks of cyclic covers of projective spaces, they provide a
new description of the stack Hg as a quotient stack of Asm(1, 2g+2) by the group GL2 /µg+1

with action [A] · f(x, y) = f(A−1(x, y)). If the genus g is even, then GL2 /µg+1
∼= GL2 with

isomorphism given by sending [A] to (detA)g/2A. And the computation of the integral
Chow ring of Hg has been computed by Edidin and Fulghesu. But in the case that the
genus g is odd, we have

GL2 /µg+1
∼=→ PGL2×Gm, [A] 7→

(
[A], (detA)

g+1
2

)
.

So the stack Hg is equivalent to the quotient [Asm(1, 2g + 2)/(PGL2×Gm)] with action
given by

([A], λ) · f(x, y) = (detA)g+1λ−2f(A−1(x, y)).

To see this more precisely, we start with the prestack over Sch consisting of objects over
a scheme S as

{
(
π : C → S, ϕ : C ∼= P1

S ,L, σ ∈ H0(C,L−2), ψ : π∗(L ⊗O(g + 1)) ∼= OS

)
}

where L is a line bundle over C of degree −g − 1. So there is a natural action of PGL2(S)
on ϕ and an action of Gm on ψ by multiplication. Therefore this prestack is a PGL2×Gm-
torsor over Hg. And by using the isomorphism ϕ : C ∼= P1

S , the prestack can be further
identified with the prestack over Sch with objects over S as {(P1

S → S,O(−g − 1), σ ∈
H0(P1

S ,O(2g + 2)))}. This makes all the prestacks mentioned above are all isomorphic to
Asm(1, 2g + 2) and the actions of PGL2×Gm are compatible as well.

In Di Lorenzo’s paper, he computed the integral Chow ring of Hg for odd genus g by com-
puting the equivariant Chow ring of a GL3×Gm-counterpart of Asm(1, 2g+2) endowed with
the action of PGL2×Gm given as above. Using the similar method sketched in Question
3, one can show that Vg+1 is also a GL3×Gm-counterpart of A(1, 2g + 2) and accordingly,
D is a GL3×Gm-counterpart of the discriminant locus ∆ ⊂ A(1, 2g + 2). But notice that
the Gm-action in the previous results is defined by multiplication with weight 1. But the
action of Gm in the description of Hg is given by the weight −2. So we should have Vg+1 \D
being a GL3×Gm-counterpart of Asm(1, 2g + 2), i.e.

Hg
∼= [(Vg+1 \D)/(GL3×Gm)]
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where the GL3×Gm-action on Vg+1 is given by

(A, λ) · (q(x), f(x)) = ((detA)q(A−1x), λ−2f(A−1(x))), x = (x0, x1, x2),

and the action of PGL2×Gm is given above.
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2 QUESTIONS FROM CALIN CHINDRIS

Throughout this section, we will work over k = C.
Let us first recall some definitions and notations. Let Q = (Q0, Q1, t, h) be a connected quiver

and d ∈ NQ0 a dimension vector. Define

(i) rep(Q,d) =
∏

a∈Q1
kd(ha)×d(ta), and

(ii) GL(d) =
∏

i∈Q0
GL(d(i), k).

The action of GL(d) on rep(Q,d) is given by simultaneous conjugation, i.e. for any element
g = (g(i))i∈Q0 ∈ GL(d) and representation V = (V (a))a∈Q1 ∈ rep(Q,d), g · V ∈ rep(Q,d) is given
by

g · V (a) = g(ha)V (a)g(ta)−1, for any a ∈ Q1.

We define the ring of invariants on rep(Q,d) to be

I(Q,d) := k[rep(Q,d)]GL(d)

= {f ∈ k[rep(Q,d)] | g · f = f, ∀g ∈ GL(d)}
where rep(Q,d) is an affine space and k[rep(Q,d)] is its coordinate ring. Moreover, the ring of
invariants I(Q,d) is finitely generated over k proved by Hilbert when the group is linearly reductive.
Recall that a group G is called linearly reductive if every finitely dimensional G-module is the direct
sum of irreducible modules.

Let a linearly reductive group G act on an affine scheme X, we get its induced action on the
coordinate ring O(X) which is finitely generated as a k-algebra. And moreover the invariant
subalgebra O(X)G is also finitely generated. Under this situation, we get an affine quotient π :
X → X//G is a good quotient where X//G := SpecO(X)G is actually an affine scheme. Thus
for any point x ∈ X, the orbit closure G · x contains a unique closed orbit. This is because if we
have two distinct closed orbits W1,W2 in G · x, they map to the same point in X//G under the
quotient map π, but this violates π being a good quotient. We have the following theorem proved
by Hilbert, Mumford and Kempf:

Theorem 2.1. Let G be a linearly reductive group and X an affine G-variety. For any x ∈ X,
there exists a one-parameter subgroup λ ∈ X∗(G) such that limt→0 λ(t) · x ∈ C where C is the
unique closed orbit in the closure G · x.

A one-parameter subgroup λ of G is a morphism of algebraic groups λ : Gm = k∗ → G. We
denote by X∗(G) the set of all one-parameter subgroups of G. For any x ∈ X, we can define a
G-map:

λx : Gm −→ X

t 7−→ λ(t) · x.

If it can be extended to a morphism λ̂x : A1 → X, then we define the limit limt→0 λx(t) = λ̂x(0). In
other words, consider the induced k-algebra homomorphism λ∗x : k[X] → k[t, t−1], we can express
the map λx(t) = (P1(t), · · · , Pn(t)) where Pi(t)’s are Laurent polynomials in t, for all i ∈ [n]. So

lim
t→0

λ(t) · x =

{
(P1(0), · · · , Pn(0)) if Pi ∈ k[t]

∞ otherwise
.

The existence of the limit limt→0 λ(t) · x means that such limit is a limit point of the orbit G · x
and thus it must be contained in the orbit closure G · x. Theorem 2.1 tells us that the converse is
also true, meaning that, if S is a closed G-invariant subset of X satisfying S ∩G · x ̸= ∅, then there
must be a one-parameter subgroup λ with property limt→0 λ(t) · x ∈ S.

We prove the following lemma, which will be used in Question 2 for obtaining a description of
the closed orbits of the GL(d)-action on rep(Q,d).
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Lemma 2.2. Let V,W ∈ rep(Q,d), then the followings are equivalent:

(1) there exists a one-parameter subgroup λ ∈ X∗(GL(d)) such that limt→0 λ(t) · V =W ;
(2) there exists a filtration of finite length of subrepresentations of V :

F·(V ) : 0 = Vm+1 ≤ Vm ≤ · · · ≤ V1 ≤ V0 = V

such that grF·(V ) = ⊕m
i=0Vi/Vi+1

∼=W .

Proof. Assume that limt→0 λ(t) ·V ∈ rep(Q,d) for some λ ∈ X∗(GL(d)). Recall that for any vertex
x ∈ Q0 there is an induced action of Gm on the vector space V (x) given by t · v = λ(t)(x)v for any

v ∈ V (x) ∼= kd(x) and t ∈ Gm, where λ(t) ∈ GL(d) and λ(t)(x) ∈ GL(d(x)). Define the weight
space

Vl(x) = {v ∈ V (X) | t · v = tlv,∀t ∈ Gm},
we then have the decomposition of V (x) into the weight spaces V (x) = ⊕l∈ZVl(x). For any m ∈ Z,
consider the collection of subspaces of V (x),

V≥m :=

⊕
k≥m

Vk(x)


x∈Q0

.

If we can prove that the existence of limt→0 λ(t) ·V is equivalent to that V≥m is a subrepresentation
of V for all m ∈ Z, then in this case we have

lim
t→0

λ(t) · V ∼=
⊕
m∈Z

V≥m/V≥m+1.

So it suffices to show that limt→0 λ(t) · V exists is equivalent to that V≥m is a subrepresentation of
V for all m ∈ Z. For any arrow a ∈ Q1, the linear map V (a) : V (ta) → V (ha) can be written as

V (a) :
⊕
k∈Z

Vk(ta) −→
⊕
l∈Z

Vl(ha).

Due to the direct sum decomposition of V (ta) and V (ha), the linear map V (a) can be viewed as a
block matrix with each (k, l)-block of form

V (a)k,l : Vk(ta) −→ Vl(ha).

Recall that k∗ acts on Vk(ta) by multiplication of tk and k∗ acts on Vl(ha) by multiplication of tl.
Thus k∗ acts on V (a)k,l by multiplication of tl−k.

Therefore limt→0 λ(t) · V exists if and only if for any a ∈ Q1, V (a)k,l = 0 whenever l− k < 0. It
means that Vk(ta) → Vl(ha) is the zero map if l < k, and thus the linear map V (a) restricted on
⊕k≥mVk(ta) is an upper triangular block matrix. This is equivalent to

V (a)

⊕
k≥m

Vk(ta)

 ⊆

⊕
k≥m

Vk(ha)


which is equivalent to that V≥m is a subrepresentation of V for each m ∈ Z. Therefore it yields the
result

lim
t→0

λ(t) · V =
⊕
m∈Z

V≥m/V≥m+1.

Note that V ∈ rep(Q,d) is finitely dimensional, then the right-hand-side is indeed a finite direct
sum. In other words, there are M,m ∈ Z, and a finite filtration of V ,

F·(V ) : 0 = · · · = V≥M+2 = V≥M+1 ≤ V≥M ≤ · · · ≤ V≥m = V≥m−1 = · · · = V

with grF·(V ) = limt→0 λ(t) · V .
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Conversely, suppose there is a filtration

F·(V ) : 0 = Vm+1 ≤ Vm ≤ · · · ≤ V1 ≤ V0 = V

of subrepresentations of V . We want to find a one-parameter subgroup λ ∈ X∗(GL(d)) such that
limt→0 λ(t) · V = grF·(V ).

For any vertex x ∈ Q1, take a basis of the vector space V (x) compatible with the filtration of
subspaces of V (x), namely 0 = Vm+1(x) ≤ Vm(x) ≤ · · · ≤ V1(x) ≤ V0(x) = V (x). Then for any
arrow a ∈ Q1, we can interpret V (a) as an upper triangular block matrix

V (a) =


Vm(a) X1,2(a) · · · X1,m+1(a)

(Vm−1/Vm)(a) · · · X2,m+1(a)
. . .

...
(V0/V1)(a)

 .

Now let’s define a one-parameter subgroup λ ∈ X∗(GL(d)) as follows. For any x ∈ Q0 and t ∈ k∗,

λ(t)(x) =


tmIdim(Vm(x))

. . .

t1Idim(V1/V2(x))

t0Idim(V0/V1(x))

 ∈ GL(d(x)),

which is a change of basis matrix of the vector space V (x). With the change of basis matrix acting
by conjugation, we compute

(λ(t) · V )(a) =


Vm(a) tX1,2 t2X1,3 · · ·

(Vm−1/Vm)(a)
. . .

(V0/V1)(a)


where the block matrices on the upper-right corner are all approaching to zero as t→ 0. Therefore
only the diagonal block matrices are left and thus

lim
t→0

λ(t) · V = grF·(V ) =

m⊕
i=0

Vi/Vi+1. □

The goal for Question 3 is to prove the King’s semi-stability criterion. The key is to apply the
Hilbert-Mumford numerical criterion to characterize χ-semi-stable element on some affine variety
for some character χ of G. It is much easier to check semi-stability with King’s criterion. Let us
first introduce notation and terminology which we will use in the proof.

Keep the same notation as above, let G be a linearly reductive algebraic group and X an affine
variety. We denote by SI(X,G) = k[X][G,G], i.e.

SI(X,G) = {f ∈ k[X] | g · f = f, ∀g ∈ [G,G]}.

A (rational) character χ of group G is a morphism G → Gm of algebraic groups. For example,
we have that any character of Gm is defined by t 7→ tr for some r ∈ Z and thus the set of characters
X∗(Gm) ∼= Z. Moreover, characters and one-parameter subgroups form a pairing. Since for any
χ ∈ X∗(G) and λ ∈ X∗(G), their composition χ ◦λ : Gm → Gm is given by sending t to tr for some
integer r ∈ Z, it yields a pairing X∗(G)×X∗(G) → Z given by ⟨χ, λ⟩ = r if χ ◦ λ(t) = tr.

For any character χ ∈ X∗(G), we define the space of χ-semi-invariants on X to be

SI(X,G)χ = {f ∈ k[X] | g · f = χ(g)f,∀g ∈ G}.

These are also referred to the weight spaces of SI(X,G) and it admits a weight spaces decomposi-
tion.
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In our situation, we take X = rep(Q,d) and G = GL(d). We know that the characters of GL(n)
is completely defined by g 7→ det(g)r for some integer r ∈ Z. We can further generalize to the
description of the characters of G = GL(d). Recall that we define

GL(d) =
∏
i∈Q0

GL(d(i)),

so a character of GL(d) must have form
∏

i∈Q0
χ(d(i)) where each χ(d(i)) is a character of GL(d(i)).

Moreover each χ(d(i)) is fully determined by its restriction to the subset of diagonal matrices in
GL(d(i)). This is due to the fact that χ(d(i)) is a group homomorphism and the target group k∗

is abelian, so each χ(d(i)) should be invariant under the conjugation action of GL(d(i)) on itself.

Thus the character χ(d(i)) is completely determined by its restriction to the maximal torus Gd(i)
m .

We know that the character of Gd(i)
m has form (t1, · · · , td(i)) 7→ tα1

1 · · · tαd(i)

d(i) , but it is also clear that

it should be invariant under the permutation of diagonal entries. It means that all the weights
α1 = · · · = αd(i) have to be equal. Therefore, for any character χ ∈ X∗(GL(d)), it can be written

as χ =
∏

i∈Q0
detθ(i) for some weight θ ∈ ZQ0 .

Notice that the above process can also be reversed. Namely, given any integer weight θ =
(θ(i))i∈Q0 ∈ ZQ0 , we can defined a character χθ associated to the weight θ, given by χθ =∏

i∈Q0
detθ(i). We could simply use the weight θ to represent the character χθ induced by it.

Therefore, by considering X = rep(Q,d) and G = GL(d) with the action of GL(d) defined by
conjugation, we can write

SI(Q,d) = k[rep(Q,d)]SL(d),

SI(Q,d)θ = {f ∈ k[rep(Q,d)] | g · f = χθ(g)f,∀g ∈ GL(d)}.

In general, we define the χ-semi-stable locus of X to be

Xss
χ := {x ∈ X | ∃f ∈ SI(X,G)χn for some n ∈ Z>0 such that f(x) ̸= 0}.

Now we are ready to state our main theorem, the Hilbert-Mumford numerical criterion of ele-
ments in Xss

χ :

Theorem 2.3. Let G be a linearly reductive group and X an affine variety. Let χ ∈ X∗(G) be a
character of G. For x ∈ X, the followings are equivalent:

(1) x is a χ-semi-stable point in X;
(2) For any one-parameter subgroup λ ∈ X∗(G), if limt→0 λ(t) · x exists, then ⟨χ, λ⟩ ≤ 0.

Finally, let us recall how we define the numerical semi-stability of quiver representations. Let
θ ∈ ZQ0 be an integral weight of Q, then we say that V ∈ rep(Q,d) is θ-semi-stable if θ ·d = 0 and
θ · dW ≤ 0 for any subrepresentation W of V .

Now we can turn to the proof the King’s semi-stability criterion partially stated in Question 3.

1. Let Q be the quiver with one vertex and one loop. Explicitly describe the ring of invariants
I(Q,n) = C[rep(Q,n)]GL(n) for any positive integer n.

Answer : Suppose that Q is the quiver with one vertex and one loop, and d = n ∈ N is
a dimension vector which associate the space kn to the single vertex in Q. Then
(a) rep(Q,n) = kn×n is an affine space consisting of all linear maps from kd(ta) ∼= kn to

kd(ha) ∼= kn which can be represented by n× n matrices with entries in k, and
(b) GL(d) = GL(n), with action on rep(Q,n) given by for any g ∈ GL(n) and A ∈

rep(Q,n), g ·A = gAg−1.
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Our goal is to describe the ring of invariants I(Q,n) = k[Matn×n(k)]
GL(n) explicitly.

First notice that

I(Q,n) = {f ∈ k[kn×n] | g · f(A) = f(g−1 ·A) = f(A),∀A ∈ kn×n,∀g ∈ GL(n)}
= {f ∈ k[kn×n] | f(g−1Ag) = f(A), ∀A ∈ kn×n, ∀g ∈ GL(n)}
= {f ∈ k[kn×n] | f(gAg−1) = f(A), ∀A ∈ kn×n, ∀g ∈ GL(n)}.

The idea is that we can reduce to the subset of diagonalizable matrices in Matn×n(k) since
it is dense in the affine space kn×n, and further reduce to the set of diagonal matrices in
Matn×n(k). Let us expand this idea below. According to the idea of considering diagonal
matrices, we can consider the eigenvalues of a given matrix A, and those elementary sym-
metric polynomials in terms of eigenvalues are obviously GL(n)-invariant elements in the
ring k[kn×n].

Precisely, consider det(tIn−A) as an element in k[rep(Q,n)][t]. The roots for det(tIn−A)
as a polynomial in terms of t are exactly the eigenvalues of A, and we can expand it as
following:

det(tIn −A) = s0(A)t
n + (−1)s1(A)t

n−1 + · · ·+ (−1)nsn(A)

where s0(A) = 1, s1(A) = tr(A), sn(A) = det(A), and in general,

si(A) =
∑

1≤j1<···<ji≤n

tj1 · · · tji

is the i-th elementary symmetric polynomial ei evaluated at the eigenvalues of A.
We first claim that si ∈ I(Q,n) for each 1 ≤ i ≤ n. Before proving this, let us first recall

the fundamental theorem of symmetric function: we have

k[t1, · · · , tn]Sn = k[e1, · · · , en]
and e1, · · · , en are algebraically independent over k.

There are multiple different bases for this invariant ring, and let’s sketch the proof using
double induction. We define the weight of a monomial Xα1

1 · · ·Xαn
n in X1, · · · , Xn to be∑

nαn. The reason why we define the weight in this way is that once we replace Xi by ei
it will return the right degree. The weight of a polynomial in k[X1, · · · , Xn] is the maximal
weight of monomials that occur. We want to show the followings.
(a) Given any symmetric polynomial f(t) ∈ k[t1, · · · , tn] of degree d, there exists a poly-

nomial g(X1, · · · , Xn) of weight at most d such that f(t) = g(e1, · · · , en).
(b) {e1, · · · , en} are indeed algebraically independent over k.
In order to prove (a), we proceed using double induction on n and the degree d. For n = 1,
we have t1 = e1. Now assume the assertion holds for n− 1 variables. Use induction on the
degree of f , namely d. The base case when d = 0 is trivial. Assume d > 0 and the result
holds for deg f < d. Let f(t) ∈ k[t1, · · · , tn] be a degree d polynomial, then f(t1, · · · , tn−1, 0)
has degree d− 1. Thus there exists a g1(X1, · · · , Xn−1) of weight at most d− 1 such that

f(t1, · · · , tn−1, 0) = g1(e
′
1, · · · , e′n−1)

where e′1, · · · , e′n−1 are elementary symmetric polynomials in t1, · · · , tn−1 obtained by set-
ting tn = 0 in ei. Now set

f1(t1, · · · , tn) := f(t1, · · · , tn)− g1(e1, · · · , en−1).

It is symmetric of degree at most d and f1(t1, · · · , tn−1, 0) = 0 by definition. Thus tn is
a factor of f1(t1, · · · , tn) but since f1 is symmetric so it contains each ti as factor for all
1 ≤ i ≤ n. Therefore

f1(t1, · · · , tn) = enf2(t1, · · · , tn)
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where deg f2 ≤ d−n < d. So by the induction hypothesis, there is some g2 ∈ k[X1, · · · , Xn]
with weight at most d− n such that f2(t1, · · · , tn) = g2(e1, · · · , en). And thus

f(t) = g1(e1, · · · , en−1) + eng2(e1, · · · , en).
In order to prove {e1, · · · , en} are algebraically independent, suppose they are not, there

exists a polynomial f(X) ∈ k[X1, · · · , Xn] such that f(e1, · · · , en) = 0. Take a nonzero
polynomial with the least degree satisfying this condition, denoted by f(X). Then we can
write f as a polynomial in Xn with coefficients in k[X1, · · · , Xn−1]. Namely,

f(X) = f0(X1, · · · , Xn−1) + f1(X1, · · · , Xn−1)Xn + · · ·+ fd(X1, · · · , Xn−1)X
d
n

where f0 cannot be zero since otherwise it violates the minimality of the degree of f .
Together with f(e1, · · · , en) = 0 and by setting tn = 0, we have f0(e

′
1, · · · , e′n−1) = 0 where

{e′1, · · · , e′n−1} is precisely the elementary symmetric polynomials in t1, · · · , tn−1. Since f0
is nonzero in k[X1, · · · , Xn−1], it implies {e1, · · · , en−1} is algebraically dependent, which
is a contradiction if we proceed by induction on n.

Now we can prove I(Q,n) = k[s1, · · · , sn] and {s1, · · · , sn} is algebraically independent
over k. First let

Dn =


t1 . . .

tn


∣∣∣∣∣∣∣ t1, · · · , tn ∈ k


and Xn be the set of all diagonalizable matrices in Matn×n(k), i.e.

Xn = {A ∈ kn×n | gAg−1 is diagonal for some g ∈ GL(n)}.
Then Xn is open in kn×n since it is the complement of the hypersurface defined by the
resultant of m(A),m(A)′ equaling zero, where m(A) is the minimal polynomial of A. Then
Xn is dense in the affine space kn×n since the latter is irreducible. So it is reduced to
considering the restriction of f ∈ k[kn×n] on Xn ⊂ kn×n. To further pass to Dn, notice that
for each i ∈ [n],
(a) si|Dn = ei since for a diagonal matrix, the eigenvalues are precisely the diagonal entries.
(b) For any f ∈ I(Q,n), f |Xn is completely determined by f |Dn . And furthermore, since

Xn ⊂ kn×n is dense, f is completely determined by f |Dn .
(c) For any f ∈ I(Q,n), f |Dn ∈ k[t1, · · · , tn]Sn = k[e1, · · · , en]. This is due to the fact

that for any permutation σ ∈ Sn, let gσ ∈ GLn be the permutation matrix associated
to σ, we have f(σ ·A) = f(gσAg

−1
σ ) = f(A).

Putting everything together, we deduce that
(1) {s1, · · · , sn} is algebraically independent since {e1, · · · , en} is algebraically independent

over k.
(2) For any f ∈ I(Q,n), we have f |Dn = g(e1, · · · , en) for some g ∈ k[X1, · · · , Xn]. This

is equivalent to

f |Dn = g(s1|Dn , · · · , sn|Dn)

= g(s1, · · · , sn)|Dn

which is equivalent to f = g(s1, · · · , sn).
Therefore I(Q,n) = k[s1, · · · , sn] and s1, · · · , sn are algebraically independent over k.

2. Let Q be an arbitrary quiver (possibly with oriented cycles), d is a dimension vector, and
V ∈ rep(Q,d) a d-dimensional representation of Q. Prove that the GL(d)-orbit of V is
closed in rep(Q,d) if and only if V is a semi-simple representation.

Answer : We will use Lemma 2.2 to get the description of closed orbits.
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Let’s first assume the orbit GL(d) · V is closed in rep(Q,d), and we want to show that
V is a semi-simple representation, i.e. it can be expressed as a direct sum of simple repre-
sentations in rep(Q,d).

Consider a Jordan-Hölder filtration of the representation V ,

F·(V ) : 0 = Vm+1 ≤ Vm ≤ · · · ≤ V1 ≤ V0 = V

with the quotients Vi/Vi+1 being simple representations for all i ∈ {0, 1, · · · ,m}. Then
according to Lemma 2.2, there is a one-parameter subgroup λ ∈ X∗(GL(d)) such that

lim
t→0

λ(t) · V = grF·(V ) =

m⊕
i=0

Vi/Vi+1.

Since limt→0 λ(t)·V is in the closure GL(d) · V , it is contained in GL(d)·V by the assumption
that the orbit GL(d) · V is closed. Therefore V ∼= limt→0 λ(t) · V = ⊕m

i=0Vi/Vi+1, and
Vi/Vi+1’s are simple for all i = {0, 1, · · · ,m}, and thus it implies that V is semi-simple.

Next, conversely, assume V is a semi-simple representation in rep(Q,d). We want to

show that the orbit GL(d) · V is closed. Let C be the unique closed orbit of GL(d) · V , if
we can prove that C = GL(d) ·V then we are done. By the above Hilbert-Mumford-Kempf
Theorem 2.1 stated at the very beginning of this section, there exists a one-parameter
subgroup λ ∈ X∗(GL(d)) such that limt→0 λ(t) · V ∈ C. According to Lemma 2.2 again, it
is equivalent to the existence of a finite filtration of subrepresentations of V , say

F·(V ) : 0 = Vm+1 ≤ Vm ≤ · · · ≤ V1 ≤ V0 = V

such that limt→0 λ(t) ·V = grF·(V ). Since V is semi-simple, we can view it as a semi-simple
k[GL(d)]-module. Thus

V ∼= grF·(V )

for any filtration F·(V ) of submodules of V . This can be shown by induction on the length
of filtration. Namely, since V1 is a proper submodule of V , and since V is semi-simple,
V1 is a direct summand of V . So we can write V ∼= V1 ⊕ V/V1. But we can also write
V1 = ⊕m

i=1Vi/Vi+1 by induction hypothesis, thus V ∼= ⊕m
i=1Vi/Vi+1 ⊕ V/V1. It implies that

V ∼= grF·(V ) = lim
t→0

λ(t) · V ∈ C.

Therefore GL(d) ·V = C because there is only one single orbit in GL(d) · V . It thus implies
the orbit GL(d) · V is closed.

3. Let Q be an arbitrary quiver with set of vertices Q0, d ∈ ZQ0

≥0 a dimension vector, and

θ ∈ ZQ0 an integral weight of Q such that θ · d = 0. Show that if V ∈ rep(Q,d) is χθ-
semi-stable then V is θ-semi-stable where χθ is the rational character of GL(d) induced by
θ.

Answer : Before proving V is θ-semi-stable, let us first prove the following claim. Sup-
pose there exists a one-parameter subgroup λ ∈ X∗(GL(d)) such that limt→0 λ(t) ·V exists.
Within the same assumption stated in the question, i.e. θ ∈ ZQ0 is an integral weight of Q
with θ · d = 0, we want to prove that

⟨χθ, λ⟩ =
∑
m∈Z

θ · dV≥m.

The right-hand-side of the above equality is actually a finite sum since we have seen before
that V≥m = V for all m ≪ 0 and V≥m = 0 for all m ≫ 0. For any vertex x ∈ Q0, after
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choosing a basis for each weight space Vm(x) = {v ∈ V (x) | t · v = tmv,∀t ∈ k∗}, we can
write λ(t)(x) ∈ GL(d(x)) as a block diagonal matrix:

λ(t)(x) =


. . . 0

tmIdimVm(x)

0
. . .

 .

This is due to the fact that [λ(t)(x)](Vm(x)) ⊆ Vm(x). Thus

(χθ ◦ λ)(t) =
∏
x∈Q0

det(λ(t)(x))θ(x)

=
∏
x∈Q0

(∏
m∈Z

det
(
tmIdimVm(x)

))θ(x)

=
∏
x∈Q0

t
∑

m∈Z m dimVm(x)θ(x)

= t

∑
x∈Q0

∑
m∈Z

mdimVm(x)θ(x)

= t

∑
x∈Q0

∑
m∈Z

m (dimV≥m(x)− dimV≥m+1(x)) θ(x)

= t

∑
x∈Q0

∑
m∈Z

dimV≥m(x)θ(x)

= t

∑
m∈Z

∑
x∈Q0

dimV≥m(x)θ(x)



= t

∑
m∈Z

θ · dV≥m

in which we can switch the order of the double summation since both are finite sums.
Therefore

⟨χθ, λ⟩ =
∑
m∈Z

θ · dV≥m
.

Back to the proof of showing V is θ-semi-stable. By the numerical definition of θ-semi-
stability, we only need to show that θ·dW ≤ 0 for any subrepresentationW of V . LetW ≤ V
be any subrepresentation of V , then we have the filtration 0 ≤W ≤ V of V . By Lemma 2.2,
there exists a one-parameter subgroup λ ∈ X∗(GL(d)) such that limt→0 λ(t)·V ∼= V/W⊕W .
According to the result proved above, we have

⟨χθ, λ⟩ = θ · dW + θ · d = θ · dW .

Since V is χθ-semi-stable and the limit limt→0 λ(t) · V exists, by the Hilbert-Mumford
numerical criterion, i.e. Theorem 2.3, we deduce that ⟨χθ, λ⟩ = θ · dW ≤ 0. So we have
shown that V is θ-semi-stable if V is χθ-semi-stable.
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3 QUESTIONS FROM ZHENBO QIN

1. What is the fundamental group of S1? How do you prove it?
Answer : Throughout this answer, we denote by I the unit interval [0, 1] ⊂ R. Given

a topological space X with a point x0 ∈ X, the fundamental group π1(X,x0) is a set
consisting of homotopy classes of loops in X based at point x0. With multiplication defined
by composing loops, the set π1(X,x0) has a group structure with identity element 1 as the
constant loop at x0 and inverse element as loop with opposite direction. We define the unit
circle S1 as

S1 = {(cos θ, sin θ) | θ ∈ R} = {eiθ | θ ∈ R}.
The unit circle S1 is path-connected, so up to isomorphism, the fundamental group π1(S

1, x0)
does not depend on the choice of the base point x0. We will write π1(S

1) as the fundamental
group of the circle S1.

Fix a base point 1 ∈ S1, finding π1(S
1) is the same as computing π1(S

1, 1). Notice that
there is a group homomorphism

ϕ : R −→ S1

x 7−→ e2πx

which is also a continuous open map between topological spaces. In particular, this map ϕ
is locally a homeomorphism. Namely ϕ : (−1/2, 1/2) → S1 \ {(−1} is a homeomorphism.
Using this fact, one can prove the following lifting lemma, which allows us to unwrap the
loops in S1 to a unique path in R containing the information of the number of times the
loop winding around the circle. Let us state the lemmas below without proofs:

Lemma 3.1 (Lifting Lemma). Let σ be any path in S1 with initial point 1. Then there
exists a unique path σ′ in R with initial point 0 such that ϕ ◦ σ′ = σ.

Under the existence of the unique lifting σ′ of σ in the above lemma, we have

Lemma 3.2 (Covering Homotopy Lemma). If σ, τ are paths in S1 both with initial point
1 such that F : σ ≃ τ rel (0, 1), then there is a unique map F ′ : I × I → R such that
F ′ : σ′ ≃ τ ′ rel (0, 1) with ϕ ◦ F ′ = F .

Now let us define

χ : π1(S
1, 1) −→ Z
[σ] 7−→ σ′(1)

where σ′(1) ∈ Z since

σ(1) = 1 = ϕ ◦ σ′(1) = e2πσ
′(1)

implies σ′(1) ∈ Z. This map χ is well-defined since for any homotopic loops σ, τ in S1 their
liftings σ′, τ ′ are homotopic with the same end point σ′(1) = τ ′(1) as paths in R.

The map χ is also a homomorphism of groups. To see this, take any two homotopy
classes [σ], [τ ] ∈ π1(S

1, 1), and let σ′, τ ′ be their liftings respectively. Define another path
τ ′′ in R with initial point σ′(1) and end point σ′(1) + τ ′(1), namely

τ ′′(s) = σ′(1) + τ ′(s), s ∈ I.

Since σ′(1) ∈ Z we have ϕ ◦ τ ′′ = ϕ ◦ τ ′ = τ and thus σ′τ ′′ is the lifting of στ . Then

χ([σ][τ ]) = χ([στ ]) = (σ′τ ′′)(1) = σ′(1) + τ ′(1) = χ([σ]) + χ([τ ]).

Now it remains to show that the map χ is also a bijection. To prove it is onto, for any
integer n ∈ Z, define a path σ in S1 rotating the circle for n times (counterclockwisely if
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n > 0 and clockwisely otherwise) with base point 1,

σ : I −→ S1

s 7−→ e2πins

with its lifting σ′ given by σ′(s) = ns. So χ([σ]) = σ′(1) = n. To prove χ is also one-to-one,
for any class [σ] ∈ π1(S

1, 1) with χ([σ]) = 0, we have σ′(1) = 0 = σ′(0). It means that σ′

is a loop in R based at the origin. Since R is contractible, the loop σ′ is homotopic to the
constant loop based at 0, i.e. σ′ ≃ 0 rel (0, 1). By composing with ϕ, we get σ ≃ 1 rel (0, 1),
which means [σ] = 1 is the identity element in the group π1(S

1, 1).
Therefore we proved that the fundamental group π1(S

1, 1) ∼= π1(S
1) = Z.

2. What are the homology and cohomology groups of RPn and CPn? How do you calculate
them?

Answer : Throughout this question, we denote by R a commutative and unitary ring.
We will write Hq(X) instead of Hq(X;R) as the singular homology of X with coefficients in
R if R is not specified. Let’s first sketch the definition of the singular homology group of any
topological space and then express RPn,CPn as spherical complexes in order to compute
their homology groups.

Given a topological space X, let Sq(X) be the free R-module generated by all the singular
q-simplexes, i.e. continuous maps ∆q → X. Thus any element in Sq(X) can be written as
a finite sum

∑
γσσ where σ is a singular q-simplex with coefficient γσ ∈ R. It is called a

q-chain. We also define the boundary operator ∂q : Sq(X) → Sq−1(X) by linearly extending

the map sending each singular q-simplex σ to
∑q

i=0(−1)iσ(i) where σ(i) = σ ◦ F q
i and F q

i is
the i-th face map.

It can be checked that ∂q ◦ ∂q+1 = 0 and thus we get a singular chain complex of X,
namely,

· · · ∂−→ Sq(X)
∂q−→ Sq−1(X)

∂q−1−−−→ · · · ∂2−→ S1(X)
∂1−→ S0(X) → 0.

The q-th singular homology group of X is defined by

Hq(X) :=
Zq(X)

Bq(X)
=

Ker(∂q : Sq(X) → Sq−1(X))

Im(∂q+1 : Sq+1(X) → Sq(X))

where we call Zq(X) the group of q-cycles in X and Bq(X) the group of q-boundaries in X.
In order to compute the singular homology group of the real and complex projective

spaces, we first want to express them as spherical complexes. A spherical complex is ob-
tained by successively attaching cells to what has already been built. Suppose that we have
a pair of spaces (X,A) where A ⊂ X, and a topological space Y with a map f : A→ Y . By
attaching X to Y along f , we mean the quotient space X ⊔ Y/(x ∼ f(x), ∀x ∈ A), denoted
by X ∪f Y . In particular, take a collared pair (En, Sn−1), then attaching an n-cell to Y
along f : Sn−1 → Y means that we obtain the quotient space En ∪f Y . Note that the new
pair (En∪f Y, Y ) is also a collared pair, and their relative homology groups are isomorphic,
i.e.

Hq(f) : Hq(E
n, Sn−1) −→ Hq(E

n ∪f Y, Y )(3.1)

is an isomorphism for all q ∈ Z.
Now let us focus on the collared pair (En, Sn−1) and map f : Sn−1 → Y along which we

get the space Z = En ∪f Y . First of all, the relative homology of the pair (En, Sn−1) fits
in the following long exact sequence:

· · · → Hq(S
n−1) → Hq(E

n) → Hq(E
n, Sn−1)

∂−→ Hq−1(S
n−1) → · · · .
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So the connecting homomorphism

∂ : Hq(E
n, Sn−1) −→ H#

q−1(S
n−1)

is an isomorphism when q ≥ 2 since En is contractible and thus Hq(E
n) = 0 for all q ≥ 1.

We are using the homology for augmented chain complex to get H#
q in order to disregard

the contribution in H0 which comes from a single point. Together with the commutative
diagram

Hq(E
n, Sn−1) H#

q−1(S
n−1)

Hq(Z, Y ) H#
q−1(Y )

∂

∼= H#
q−1(f)

,

we get the following long exact sequence:

· · · Hq(Y ) Hq(Z) Hq(Y,Z) H#
q−1(Y ) H#

q−1(Z) · · ·

Hq(E
n, Sn−1)

H#
q−1(S

n−1)

H#
q−1(f)

.

Moreover we know the homology of Sn that H#
q (Sn) = 0 except for q = n. Therefore we

get the following facts:

(a) For q ̸= n and q ̸= n− 1, H#
q (Y ) → H#

q (Z) is an isomorphism;
(b) We have the following exact sequence

0 H#
n (Y ) H#

n (Z) H#
n−1(S

n−1) H#
n−1(Y ) H#

n−1(Z) 0

R

H#
n−1(f)

.

Since both RPn and CPn can be obtained by successively attaching cells, we can use the
above results inductively to get their homology groups. Before doing that, let’s first see
how we view them as spherical complexes.

For real projective space RPn, we have the quotient map f : Sn−1 → RPn−1 given by
identifying the antipodal points. In order to construct RPn, one first can embed En into
Sn as upper hemisphere for instance. Then

RPn = Sn/(x ∼ −x) = En/(x ∼ −x,∀x ∈ ∂En ∼= Sn−1).

So RPn is obtained by attaching an n-cell to RPn−1 along the quotient map f : Sn−1 →
RPn−1.

For complex projective space CPn, firstly, we have the map

f : E2n −→ CPn

(z0, · · · , zn−1) 7−→

z0 : · · · : zn−1 : 1−

(
n−1∑
i=0

|zi|2
)1/2

 .

Then it is easy to see that f sends the boundary ∂E2n to the point (z0 : · · · : zn−1 : 0), i.e.
f sends ∂E2n ∼= S2n−1 into CPn−1. We use the same notation f to denote its restriction to
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∂E2n ∼= S2n−1. By the following pushout diagram

S2n−1 CPn−1

E2n E2n ∪f CPn−1

CPn

f

f

∃

The map on the bottom-right corner E2n ∪f CPn−1 → CPn, is indeed bijective and con-
tinuous. So it turns out to be a homeomorphism since it is defined over a compact space.
Follow this construction, CPn can be obtained by attaching a (2n)-cell to CPn−1 along the
map f : S2n−1 → CPn−1.

Now we are ready to compute their homology groups.
Let us start with computing Hq(CPn). Claim that

Hq(CPn) =

{
0 if q > 2n or q is odd;

R if 0 ≤ q ≤ 2n and q is even.

In order to prove the claim, use induction of the dimension n. For n = 0, we know that
RP0 is a single point and thus H0(CP0) = R,Hq(CP0) = 0 for all q ≥ 1. Now if n ≥ 1,

assume that the statement holds for CPn−1. Consider q ≥ 1, n ≥ 1. By the above fact (a),
for q ̸= 2n and q ̸= 2n− 1, we have

Hq(CPn) = H#
q (CPn) ∼= H#

q (CPn−1) = Hq(CPn−1).

Thus we can read off Hq(CPn) directly from Hq(CPn−1) when q ̸= 2n, 2n− 1. Now we only
need to consider p = 2n and p = 2n− 1. By fact (b) above, we have the exact sequence

0 H#
2n(CP

n−1) H#
2n(CP

n) H#
2n−1(S

2n−1) H#
2n−1(CP

n−1) H#
2n−1(CP

n) 0

0 R 0

which implies H#
2n(CP

n) = R and H#
2n−1(CP

n) = 0. Therefore we have proved the claim.
For computing Hq(RPn), claim that

Hq(RPn) =


0 if q > n;

R2 if q is even and 1 < q ≤ n;

R/(2) if q is odd and 1 ≤ q ≤ n− 1;

R if q = 0 or q = n and q is odd.

We denote by R2 the set of 2-torsions, i.e. R2 := {r ∈ R | 2r = 0}.
In particular, if R = Z, we have

Hq(RPn;Z) =


0 if q > n or q is even and 1 < q ≤ n;

Z/2Z if q is odd and 1 ≤ q ≤ n− 1;

Z if q = 0 or q = n is odd.

Again, we will proceed using induction on n. If n = 0, H0(RP0) = R and Hq(RP0) = 0 for

q ≥ 1. Consider q ≥ 1. Now assume n ≥ 1 and the result holds for RPn−1. If q ̸= n, n− 1,
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by fact (a), we get Hq(RPn) = Hq(RPn−1). If q = n and q = n−1, we get an exact sequence
by fact (b),

0 → Hn(RPn) → Hn−1(S
n−1) ∼= R

Hn−1(f)−−−−−→ Hn−1(RPn−1) → Hn−1(RPn) → 0.(3.2)

So in order to get Hn(RPn) and Hn−1(RPn), we need to know how Hn−1(f) is defined. We
state the following theorem without proof:

Theorem 3.3. Let f : Sn → RPn be the canonical quotient map. If n is even, Hn(f) = 0.
If n is odd, Hn(f) is given by multiplication by 2.

The theorem can be proved by looking at the diagram

0 Hn(S
n) Hn(S

n, Sn−1) Hn−1(S
n−1) 0

0 Hn(RPn) Hn(RPn,RPn−1) Hn−1(RPn−1) · · ·

where roughly speaking, the middle vertical map can be viewed by pinching Sn−1 in Sn to
a point, then we get the upper half and lower half both homeomorphic to RPn/RPn−1 but
differed by an antipodal map. Thus it depends on the parity of n.

According the above theorem, back to the exact sequence (3.2), the middle map Hn−1(f)
is given by multiplication by 2 if n is even, while it is given by the zero map if n is odd.
Therefore if n is even, then Hn(RPn) = R2 and Hn−1(RPn) = R/(2). And if n is odd, then
Hn(RPn) = R and Hn−1(RPn) = R2. Thus we proved the claim.

The singular cohomology group is defined in the dual manner. We define Sq(X) a R-
module consisting of all q-cochains on X with values in R, i.e. functions Singq(X) → R.
Equivalently, we can view Sq(X;R) = Hom(Sq(X), R). There is also a coboundary operator
δq : Sq(X;R) → Sq+1(X;R) defined by

δq(c)(σ) = c(∂q+1σ) =

q+1∑
i=1

(−1)ic(σ ◦ F q+1
i ),

for any q-cochain c and (q + 1)-simplex σ. One can check that δq ◦ δq−1 = 0 is deduced
from ∂q ◦ ∂q+1 = 0. We then define the q-th singular cohomology group of X as the q-th
cohomology group of the cochain complex (Sq(X), δq), i.e.

Hq(X) =
Zq(X)

Bq(X)
=

Ker(δq : Sq(X) → Sq+1(X))

Im(δq−1 : Sq−1(X) → Sq(X))
.

Note that on the level of homology and cohomology, there is a Kronecker pair Hq(X)×
Hq(X) → R which yields a natural homomorphism

α : Hq(X) −→ Hom(Hq(X), R)

defined by α([c])([σ]) = ⟨c, σ⟩ = c(σ). The Universal Coefficient Theorem for singular
(co)homology tells us under what assumptions the canonical homomorphism α is surjective
and what the kernel looks like. Briefly, given a chain complex C· of free abelian groups and
an abelian group G, we can write C · = HomAb(C·;G) as the associated cochain complex.
Then the theorem tells us that there is a split short exact sequence:

0 → Ext(Hq−1(C·), G) → Hq(C ·;G)
α−→ Hom(Hq(C·), G) → 0.

The result of the theorem can be generalized from abelian groups (Z-modules) to the
category of R-modules as long as R is a PID. This is because if R is a PID, then every
submodule of a free R-module is free. And moreover, we can take trivial resolution of any
free R-module to kill all the Ext groups, i.e. length two resolutions always exist, so all high
Ext groups vanish.
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In particular, consider the integral coefficients, i.e. R = Z. Let Tq ⊂ Hq(X) be the
torsion part, then

Hq(X;Z) ∼= (Hq(X)/Tq)⊕ Tq−1.

Now we can write down the singular cohomology group of CPn and RPn from their
homology groups:

Hq(CPn;Z) =

{
0 if q > 2n or q is odd;

Z if 0 ≤ q ≤ 2n and q is even,

and

Hq(RPn;Z) =


Z/2Z if q is even and 2 ≤ q ≤ n;

Z if q = 0 or q = n and q is odd;

0 otherwise.

3. What are the Euler characteristics of RPn and CPn?
Answer : Let X be a topological space. The q-th Betti number, denoted by βq, is the

rank of the abelian group Hq(X;Z). The Euler characteristic of X is defined by

χ(X) =
∑
q≥0

(−1)qβq

whenever the sum is finite.
Recall the results from Question 2 that

Hq(CPn;Z) =

{
0 if q > 2n or q is odd;

Z if 0 ≤ q ≤ 2n and q is even.

Then βq = 0 when q is odd or q > 2n and βq = 1 when 0 ≤ q ≤ 2n and q is even. So the
Euler characteristic of CPn is χ(CPn) = n+ 1.

Since

Hq(RPn;Z) =


0 if q > n or q is even and 1 < q ≤ n;

Z/2Z if q is odd and 1 ≤ q ≤ n− 1;

Z if q = 0 or q = n is odd,

it implies βq = 1 if q = 0 or q = n is odd, and βq = 0 otherwise. Therefore the Euler
characteristic of RPn is

χ(RPn) =

{
1 if n is even;

0 if n is odd.
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