

A TEST FAMILY OF HYPERELLIPTIC CURVES

ZHENGNING HU

This short note provides a construction of one-parameter family of hyperelliptic curves with at worst a single node. The test curve constructed here was previously used for a sanity check of the results in [1].

1. BACKGROUND

Let \mathcal{H}_g be the moduli stack of smooth hyperelliptic curves of genus g , which is a closed smooth substack of \mathcal{M}_g , and we denote by $\overline{\mathcal{H}}_g$ its closure in $\overline{\mathcal{M}}_g$. Likewise, we consider $\overline{\mathcal{H}}_{g,n}$ to be the stack of n -pointed stable hyperelliptic curves, defined as the stack-theoretic inverse image of $\overline{\mathcal{H}}_g$ under the forgetful morphism $\overline{\mathcal{M}}_{g,n} \rightarrow \overline{\mathcal{M}}_g$. Equivalently, $\overline{\mathcal{H}}_{g,n}$ is the fiber product $\overline{\mathcal{H}}_g \times_{\overline{\mathcal{M}}_g} \overline{\mathcal{M}}_{g,n}$.

The universal hyperelliptic curve $\mathcal{H}_{g,1}$ contains a substack $\mathcal{H}_{g,w}$ which parametrizes Weierstrass points in the fibers of the morphism $\mathcal{H}_{g,1} \rightarrow \mathcal{H}_g$. The substack $\mathcal{H}_{g,w}$ is étale over \mathcal{H}_g of degree $2g+2$ and thus $\mathcal{H}_{g,w}$ is a smooth Cartier divisor in $\mathcal{H}_{g,1}$. We further denote by $\overline{\mathcal{H}}_{g,w}$ its closure in $\overline{\mathcal{H}}_{g,1}$. Note that $\overline{\mathcal{H}}_{g,w}$ is also a (irreducible) Cartier divisor in $\overline{\mathcal{H}}_{g,1}$. Since every stable family of hyperelliptic curves admits a global hyperelliptic involution τ , the restriction of the divisor $\overline{\mathcal{H}}_{g,w}$ to a 1-pointed stable family $X \rightarrow B \rightarrow \overline{\mathcal{H}}_{g,1}$ is the fixed locus of τ minus the separating nodes of type Δ_i for $i > 0$. The observation can be applied to compute the degree of $\overline{\mathcal{H}}_{g,w}$ on a 1-pointed family $(X \rightarrow B, \sigma)$ parametrized by a smooth projective variety B which maps to $\overline{\mathcal{H}}_{g,1}$.

Proposition 1.1. *Given a pointed family of stable genus g hyperelliptic curves $(X \rightarrow B, \sigma)$ with the hyperelliptic involution τ , such that $X \rightarrow B$ remains stable after forgetting the section σ . The pullback of $\overline{\mathcal{H}}_{g,w}$ along the family $B \rightarrow \overline{\mathcal{H}}_{g,1}$ is given by the divisor $\sigma^* \tau^* \mathcal{O}_X(\sigma)$.*

2. EXPLICIT CONSTRUCTION

In this section, we give an explicit construction of a one-parameter family $(\widetilde{X}' \rightarrow \widetilde{W}, \Delta_W)$ of genus g stable hyperelliptic curves with at worst a nonseparating node, together with a Weierstrass section Δ_W .

Let's start with the projection $p : \mathbb{P}^1 \times \mathbb{P}^1 \rightarrow \mathbb{P}^1$ to the second component.

$$\begin{array}{ccccc}
 \Delta_W & \longrightarrow & \widetilde{W} & & \\
 \downarrow & & \downarrow & & \\
 \widetilde{X}' & \xrightarrow{h} & \widetilde{X} & & \\
 \downarrow & & \downarrow \widetilde{f} & & \\
 & & X & \longleftarrow & W \\
 & & \downarrow f & & \downarrow \\
 & & \mathbb{P}^1 \times \mathbb{P}^1 & \xleftarrow{\quad} & C \\
 & & \downarrow p & & \nearrow \\
 \widetilde{W} & \longrightarrow & \mathbb{P}^1 & &
 \end{array}$$

Date: March 30, 2022.

Take C to be a general smooth curve contained in the linear system $|\mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(2g+2, 2)|$ such that the restriction $p|_C: C \rightarrow \mathbb{P}^1$ is a simple cover of constant degree $2g+2$. It can be easily checked that the genus of C is $g(C) = 2g+1$ and $p|_C$ has $8g+4$ ramification points by Riemann-Hurwitz. In order to construct a family of hyperelliptic curves, we take $f: X \rightarrow \mathbb{P}^1 \times \mathbb{P}^1$ to be the double cover branched over the curve C , and let $W = f^{-1}(C)$ be such that $f^*C = 2W$. We are allowed to take double cover of $\mathbb{P}^1 \times \mathbb{P}^1$ with branch locus given by C since C is a square in $\text{Pic}(\mathbb{P}^1 \times \mathbb{P}^1)$. Thus by projection formula it is easy to see that $f_*W = C$ since $2f_*W = f_*f^*C = 2C$. Next we take $\tilde{f}: \tilde{X} \rightarrow X$ to be the blowup of X at $8g+4$ smooth points on W which map to the ramification points on C , and let \tilde{W} denote the strict transform of W . We then obtain an unramified cover $\tilde{W} \rightarrow \mathbb{P}^1$ of degree $2g+2$, along which we take a base change $h: \tilde{X}' \rightarrow \tilde{X}$. Let $\Delta_W = h^{-1}(\tilde{W})$, and as before, we have $h^*\tilde{W} = (2g+2)\Delta_W$ and $h_*\Delta_W = \tilde{W}$. Stabilizing the fibers if necessary, therefore we obtain a family of stable hyperelliptic curves $\tilde{X}' \rightarrow \tilde{W}$ with a section Δ_W , which only intersects nontrivially with a single boundary divisor η_{irr} described in [1, Proposition 3.5].

3. COMPUTATIONS OF INTERSECTION NUMBERS

By Proposition 1.1, we see that

$$\deg_{\tilde{W}}[\bar{\mathcal{H}}_{g,w}] = \Delta_W \cdot \left(\Delta_W + \sum_{i=1}^{8g+4} E_i \right) = (\Delta_W \cdot \Delta_W) + (8g+4),$$

where E_i 's are the exceptional \mathbb{P}^1 's from the blowup \tilde{f} of smooth points. And moreover, we also have

$$\deg_{\tilde{W}} \psi = -(\Delta_W \cdot \Delta_W), \quad \deg_{\tilde{W}} \eta_{irr} = (2g+2)(8g+4).$$

Therefore it suffices to find the intersection $\Delta_W \cdot K_{\tilde{X}'}$, as $\Delta_W \cdot \Delta_W = 4g - \Delta_W \cdot K_{\tilde{X}'}$ by the adjunction formula. It can be computed that

$$\begin{aligned} \Delta_W \cdot K_{\tilde{X}'} &= h_*(\Delta_W \cdot h^*K_{\tilde{X}}) = \tilde{W} \cdot K_{\tilde{X}} = \tilde{W} \cdot \left(\tilde{f}^*K_X + \sum_{i=1}^{8g+4} E_i \right) \\ &= W \cdot K_X + (8g+4) = C \cdot K_{\mathbb{P}^1 \times \mathbb{P}^1} + W \cdot W + (8g+4) = 8g, \end{aligned}$$

where the last equality is due to the fact that

$$W \cdot W = \frac{1}{4}(f^*C \cdot f^*C) = \frac{1}{4}(C \cdot f_*2W) = \frac{1}{2}C \cdot C = 4g+4.$$

Therefore, we obtain the following degrees restricted on this family $(\tilde{X}' \rightarrow \tilde{W}, \Delta_W)$:

$$\deg_{\tilde{W}}[\bar{\mathcal{H}}_{g,w}] = 4g+4, \quad \deg_{\tilde{W}} \psi = 4g, \quad \deg_{\tilde{W}} \eta_{irr} = 8(g+1)(2g+1),$$

which together satisfy the expression of $[\bar{\mathcal{H}}_{g,w}]$ in the divisor class group $\text{Cl}(\bar{\mathcal{H}}_{g,1})$ [1, Theorem 1.1]:

$$\begin{aligned} [\bar{\mathcal{H}}_{g,w}] &= \left(\frac{g+1}{g-1} \right) \psi - \frac{1}{2(2g+1)(g-1)} \eta_{irr} + \\ &\quad \sum_{i=1}^{\lfloor (g-1)/2 \rfloor} \left[-\frac{(i+1)(2i+1)}{(2g+1)(g-1)} \eta_{i,0} - \frac{(g-i)[2(g-i)-1]}{(2g+1)(g-1)} \eta_{i,1} \right] + \\ &\quad \sum_{i=1}^{\lfloor g/2 \rfloor} \left[-\frac{2i(2i+1)}{(2g+1)(g-1)} \delta_{i,0} - \frac{2(g-i)[2(g-i)+1]}{(2g+1)(g-1)} \delta_{i,1} \right]. \end{aligned}$$

REFERENCES

[1] D. Edidin and Z. Hu. Chow classes of divisors on stacks of pointed hyperelliptic curves. *Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)*, 25(1):217–240, 2024. doi:10.2422/2036-2145.202204_001.